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ABSTRACT 

Existing literature on the relationship between ridehailing (RH) and transit services is limited to 

empirical studies that rely on self-reported answers and lack spatial and temporal contexts. To 

fill this gap, this research takes a novel approach that uses real-time geospatial analyses. Using 

this approach, we estimate the extent to which RH services have contributed to the recent decline 

in public transit ridership. 

 

With source data on RH trips in Chicago, Illinois, we computed the real-time transit-

equivalent trips for the 7,949,902 RH trips taken in June 2019. The sheer size of this sample far 

exceeds the samples studied in existing literature. An existing multinomial nested logit model 

was used to determine the probability of a ridehailer selecting a transit alternative to serve the 

specific origin-destination pair, 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)1.  

 

The study found that 31% of RH trips are replaceable, 61% are not replaceable, and 8% 

lie within the buffer zone. We measured the robustness of this probability using a parametric 

sensitivity analysis, and performed a two-tailed t-test, with a 95% confidence interval. In 

combination with a summation of probabilities, the results indicate that the total travel time for a 

transit trip has the greatest influence on the probability of using transit, whereas the airport pass 

price has the least influence. Further, walk time, number of stops in the origin and destination 

census tracts, and household income also have significant impacts on the probability of using 

transit. Lastly, we performed a time value analysis to explore the cost and trip duration 

difference between RH trips and their transit-equivalent trips on the probability of switching to 

transit. The findings demonstrated that approximately 90% of RH trips taken had a transit-

equivalent trip that was less expensive, but slower.  

 

The main contribution of this study is its thorough approach and the fine-tuned series of 

real-time spatial analyses that investigate the replaceability of RH trips with public transit. The 

results and discussion intend to provide a perspective derived from real trips and to encourage 

public transit agencies to investigate possible opportunities to collaborate with RH companies. 

Moreover, the methodologies introduced can be used by transit agencies to internally evaluate 

opportunities and redundancies in services. Lastly, we hope that this effort provides proof of the 

research benefits associated with the recording and release of RH data. 

  

                                                           
1 This value defines the replaceability of the transit-equivalent trip, where the value ranging from 0 to 0.45 indicates 

the transit trip is not-replaceable (NR), and a value ranging from 0.55 to 1.0 indicates the transit trip is replaceable 

(R). 
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CHAPTER 1: INTRODUCTION 

History of Ridehailing Services 

The nascent ridehailing2 (RH) market was first introduced to the United States in 2008 when 

Travis Kalanick and Garret Camp cofounded their company, Uber. Two years later, the company 

released its beta version and began services in San Francisco [1]. In 2012, an existing carpooling 

company, Zimride, launched a competing RH service in San Francisco. By 2013, Zimride had 

sold its carpooling business and renamed itself Lyft, and began exclusively operating as an RH 

service [2]. Over the next 2 years, competition heightened as Uber expanded to 60 cities across 

six continents, and Lyft announced its plan to expand to 24 more cities, totaling coverage of over 

60 cities [2, 3]. As of January 2019, nearly a decade later, 36% of US adults have used or 

currently use RH services [4].  

 

Ridehailing is best defined as an app-based, on-demand transportation service that 

provides customers with door-to-door transportation for a single trip [5]. Through the company’s 

smartphone app, a customer enters a specific pick-up and drop-off location, or origin-destination 

(O-D) pair. On the backend, the RH company’s algorithm calculates an appropriate route and trip 

fare, selecting the optimal driver to service the trip based on availability and range from the 

requested pick-up location. Once the algorithm selects a driver, the customer is notified of the 

estimated pick-up time and vehicle/driver details. The company’s drivers operate on their own 

schedule, independent from the company, and use their own vehicles.   

 

Inherently, the novelty of RH services brings about concern regarding their impact on the 

existing transportation network. Critics argue that RH services have first taken ridership from a 

similar service, taxis [6], and second, have negatively impacted public transit. While RH and 

taxis share the concept of providing customers with private transportation, the novelty of RH is 

attributed to its advantageous flexibility, real-time location data, availability (outside of cities) 

and ease of payment. The first notable difference is the ability for customers to view the trip fare 

and pay the fare through the app prior to placing an order. Once the trip is ordered, the cost of the 

trip cannot be changed regardless of any in-route deviations. This process is seamless and has 

increased convenience when compared to calling a taxi. Secondly, the app allows customers to 

plan a trip ahead or in the moment and view the location of the driver in real time. This provides 

for greater trip security and increased convenience for the rider’s pre-trip agenda. Lastly, the 

rider has the opportunity to “cancel” an order prior to pick-up. In contrast to the whole RH 

process, traditional taxis must be hailed curbside and the fare is unknown prior to the ride. These 

features of RH services are advantageous in situations demanding flexibility or security, such as 

inclement weather or planned events. 

 

Ridehailing and Public Transit 

Coincidentally, when the RH market began rapidly gaining traction through geographic 

expansion and increased acceptance in 2014, average public transit ridership in the US began its 

decline. In the early twenty-first century, transit ridership in the US experienced two periods of 

growth followed by decline (Figure 1). 

                                                           
2 Within the existing literature, ridehailing is more commonly known as “ridesharing” but because it entails 

“hailing” a ride which is not necessarily shared, ridehailing is most appropriate. 
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Figure 1. Annual public transit ridership in the US from 2000–2019. Source data: APTA ridership by mode and 

quarter 1990–present [7]. Annual ridership counts are the sum of bus, light rail, commuter rail, and heavy rail 

trips. 

On average, from 2003 to 2008, public transit ridership in the US increased by 2.58% 

each year. Following the 2008 economic recession, ridership levels took a downturn until 2010, 

when ridership began increasing again until 2014. However, unlike the first period of growth, 

this growth rate decreased in magnitude each year until it plateaued in 2014. At this point, transit 

ridership began rapidly decreasing, losing more riders per year until 2019. While these statistics 

measure the national trend in mode-choice behavior, the trends within metropolitan transit 

agencies vary by year and mode. Nonetheless, continuous decline in ridership is significant and 

indicative of a disturbance to the market.  

 

From 2008 to 2018, the population of eligible riders3 increased by 5.63%. Yet, the annual 

transit trip per eligible rider decreased by 11.6%, as shown in Figure 2, below. More specifically, 

the transit ridership per eligible rider decreased by 8.6% from 2014 to 2018. Despite the steady 

growth of the US population, transit ridership does not reflect that growth.  

 

Historically, declines in transit ridership can be a result of macroeconomic, geographic, 

and demographic changes in a region. The first period of ridership decline in the twenty-first  

century started in 2008 and was evidently a ramification of the economic recession. Yet, the 

cause(s) of the most recent decline is not as discernable. Further, this period exhibited a larger 

decline in magnitude and has spanned 5 years, as opposed to 2 years. So, what could have 

possibly caused a more crippling effect on transit ridership than the economic recession? Was the 

second decline in transit ridership a result of RH as an emerging alternative mode of 

transportation? 

                                                           
3 Eligible riders: total US populations between age 18 and 64 [8] "Population by Age," 2008-2018 ed. Online: 

Kaiser Family Foundation, 2018. 
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Figure 2. Annual transit trips per eligible rider in the US. Source Data: APTA ridership by mode and quarter 1990-

present, and population by age from KFF. 

The main obstacle in answering this question is deciphering whether a ridehailer took a 

trip that was originally going to be serviced with transit. Under this condition, public transit 

would be considered “replaced” by RH. However, if during the decision-making process, the 

individual did not consider public transit as a feasible mode of travel, then theoretically there was 

no competition between the mode choices.  

 

Based on spatial analysis, many RH trips could be serviced by transit, with variance in 

travel times and access and egress distances. However, there is no guarantee that the trip 

experiences will be comparable; many ridehailers choose RH services because of the increased 

reliability, convenience, and cleanliness [9]. RH trips can be characterized by two sets of 

attributes: level of service (LOS) and individual preferences. LOS attributes are defined by 

quantifiable trip metrics such as trip length, duration, access and egress time, fare/cost, wait time, 

and walking time. Additionally, individualistic service metrics, such as level of comfort, ease of 

payment process, and cleanliness, are likely to vary. [9]. These factors and preferences are all 

important in analyzing an individual’s mode selection process. Large scale measurements of 

these preferences are not publicly available; hence, it has been challenging for researchers to 

probe the actual relationship between RH services and public transit. In the existing literature, 

most researchers explore the relationship through empirical studies, thus creating a gap in 

literature based on the source data.  

 

In this study, RH trip source data from the City of Chicago is used to explore the 

similarities and determine the trends in overlap between RH trips and their equivalent transit 

trips. If O-D RH pairs have a viable public transit equivalent trip with sufficient utility, we can 

infer that the Chicago Transit Authority (CTA) has an opportunity to gain ridership in these 

areas.  
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Terminology 

The following is an extensive list of terminology relevant to this report and their corresponding 

contextual definitions.  

 

Buffer zone: this is the group of transit-equivalent trips that have a 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) = (0.45 ∪
0.55). Trips that lie within this zone are considered to be unreliable indicators of true mode-

choice behaviors and are excluded from the analyses. 

 

First- and last-mile (FLM) arrangement: this refers to the first and last leg of the transit trip that 

connect the individual from their origin to the first transit stop, and from the last transit stop to 

their destination. This is commonly executed via walking and can be a deterrent to potential 

transit riders, especially the physically disabled. A more taxing FLM is associated with transit 

networks where the density of transit stops in the origin or destination zone is low.  

 

In-vehicle travel time (IVTT): this is the portion of the total travel time, and accounts for all time 

spent traveling inside the transit vehicle(s). In this report, IVTT may be referred to as the “transit 

time.” For a trip that is executed by walking only, the IVTT equals zero. 

 

Not-replaced (NR) trip/group: this is the group containing all transit-equivalent trips with a 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  ≤  0.45. A transit-equivalent trip that has a probability in this range [0 ∪
0.45] is deemed to be inviable to the individual, and ultimately, does not compete with the RH 

trip service. These transit-equivalent trips exhibit poor LOS attributes.  

 

Out-of-vehicle travel time (OVTT): this is a portion of the total travel time outside of the 

vehicle(s); i.e. accessing, egressing, wait time, transfer walk time. For a trip that is executed by 

walking only, the OVTT equals the total travel time (TTT). 

 

Pooled Trip, Ridehailing: these are RH trips that combine two or more trips, such that passengers 

“share” the ride. In some scenarios, all passengers meet at a specified location and are dropped 

off at a shared location. In other scenarios, passengers are picked up at their desired location and 

then dropped off in the most efficient order.  

 

Replaced (R) group: this is the group containing all transit-equivalent trips with a 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  ≥  0.55. A transit-equivalent trip that has a probability in the range [0.55 ∪
1.0] is considered a viable mode of service for the specific O-D pair.  

 

Ridehailing (RH): this refers to the act of servicing a trip via a transportation network company 

(TNC). Users must have an account with the respective TNC, and have the app downloaded onto 

their smartphone. These trips are ordered using the TNC’s app and require the user to input their 

destination, whereas the origin is automatically determined using the smartphone’s internal GIS 

software. TNC trip fare pricing is dynamic and dependent on the surrounding demand. However, 

when ordering a trip, the displayed fare in present time becomes “locked” and will not change 

even if the demand increases or decreases while the rider waits. RH trips can be pooled or single 

passenger, as defined in this section.  
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Route: refers to the output from ArcGIS’ Route Analysis: the transit-equivalent route for a given 

RH trip. 

 

Sensitivity Condition: with reference to the section, Sensitivity Analysis, a sensitivity condition is 

defined as the percent-change in the sensitivity variable. For each variable, there existed 20 

sensitivity conditions, ranging from -50% to +50% in increments of 5%, where the 0% condition 

is the observed values and results. 

 

Sensitivity Variable: with reference to the section Sensitivity Analysis, a sensitivity variable is the 

variable that is modified and redefined for the 20 sensitivity conditions. All other variables, 

parameters, and constraints remain equal to their observed value. There are seven sensitivity 

variables for this analysis, which are outlined in Chapter 3. 

 

Single-Passenger Trip, Ridehailing: these are RH trips where there is one person who ordered 

the trip, and there is one O-D pair. In some cases, these trips can have more than one passenger. 

For example, a group of friends want to ride together, so one person in the group orders the RH 

trip, and the remaining friends ride with this person. If the fare is split, payment transactions are 

not associated with the TNC company. 

 

Transportation Network Companies, (TNCs): these are the private businesses that offer RH 

services. Examples include Uber and Lyft. 

 

Total travel time, transit (TTT): this is the time elapsed between the departure time at the origin 

and the arrival time at the destination for the transit-equivalent trip. This value accounts for 

OVTT and IVTT if applicable. 

 

Transit-equivalent trip/CTA-equivalent: this is a trip classification and refers to the output from 

ArcGIS’ Route Analysis. For an input RH trip with an O-D pair, Route Analysis will calculate 

the most efficient transit trip to serve the O-D pair. For the program, we input GTFS data that 

corresponded to the CTA only; there exist other transit services in Chicago, but the GTFS dataset 

was limited to CTA. Thus, any output trip that utilizes transit is using CTA services. It is 

important to consider that the output trip does not necessarily use transit. Under certain 

conditions, the program determines that it is quicker for an individual to walk from the origin to 

the destination, rather than using transit. Thus, a “transit-equivalent” trip does not imply the use 

of transit.  

 

Trip duration, RH: this is the total time between the pick-up time and drop-off time for an RH 

trip. 

 

Walk time (WT): this is the sum of time allocated to walking and is a portion of the OVTT. This 

value is output by the ArcGIS Route Analysis, and assumes a walking speed of 5 km/hr.  
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CHAPTER 2: LITERATURE REVIEW 

The current body of research on RH is limited by the service’s novelty and the lack of publicly 

available RH trip data. External research on the utility of RH and its impact is nearly nonexistent 

due to its relatively recent introduction to the market in 2010. Moreover, RH services are 

privately owned, and consequently, trip-specific data is exclusively withheld and unavailable for 

public research use. While there is no existing literature that definitively states how RH services 

impact public transit ridership, many stipulate a correlation between the two, and if RH is a 

contributor, it is likely not acting alone.  

 

This absence of trip data has led researchers to obtain empirical data through stated 

preference and revealed preference surveys [10-13]. Some studies executed intercept surveys at 

points of interest [6], and one executed in-person interviews [14].Yet, to our knowledge, there 

exists no research on the relationship between RH and public transit that uses source-data. 

Consequently, these empirical methods confine the spatial and temporal ranges, limiting the 

application and testing the integrity of the findings. Ultimately, this has led to conflicting 

arguments that have yet to be resolved. In the following literature review, we identify 

reoccurring themes and findings regarding the impact of RH services on public transit ridership. 

Additionally, we highlight the methods used to obtain data. Lastly, we determine gaps in the 

literature and how they will be addressed in this study. 

 

It is important to note that one-to-many relationships are encompassed by the relationship 

between public transit and RH. Bus and rail (light and heavy) both fall under “public transit,” 

although trips of differing purposes, rider demographics, and LOS metrics are serviced by each 

mode. Accordingly, most literature analyzes each modality separately.  

 

In general, the impact of RH on vehicle miles traveled and vehicle emissions, RH’s 

relative safety, and its effect on mode selection are explored in the current literature. Yet, the 

latter of the three concerns is the least explored. Contreras and Paz presented three questions, one 

of which illustrates this concern: “have RHC’s [RH companies] had a negative or positive effect 

on transit ridership and/or revenue?” [9]. Answering this question requires empirical and source-

data based research.  

 

As stated previously, conflicting arguments have evolved from the lack of source-data- 

based research. Considering that “public transit” encompasses many transit modes, positions 

tend to be unique per mode (bus, rail). Argued by the first position is that the perceived gains of 

RH services attract riders and thereby provide substitute transit. This is based on the significant 

difference between the gains, and the marginal difference between the costs of public transit 

versus RH. Thus, the cost differential is perceived to be worth the gains that RH offers, and 

thereby to replace public transit. Accordingly, it has been posed by critics that RH services 

contribute to the recent decline in public transit ridership. The second and opposing position 

argues that RH complements and reinforces the use of public transit by servicing the first- and/or 

last-mile (FLM) arrangement, and therefore induces revenue. 

 

Most studies have explored mode choice behavior towards RH through observation-based 

research methods, such as stated preference, revealed preference, and intercept surveys [11, 12, 
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15]. According to Clewlow and Mishra, RH services replaced 6% of bus trips and 3% of light 

rail trips, whereas RH was complementary to commuter rail services, increasing ridership by 3% 

(Clewlow). Similarly, Graehler et al. found that the entry of a TNC decreased heavy rail and bus 

ridership by 1.3% and 1.7%, respectively [16].  

 

Rayle et al. determined the primary reasons why individuals chose RH over the 

alternative of interest. In brief, users chose RH over the bus because it was faster and over rail 

because it was faster, easier to pay, and had less wait time [6].  

 

Henao and Marshall worked as Uber drivers in Denver, Colorado to obtain observational 

data in real time via recorded verbal interviews. Of the 311 passengers interviewed, only 5.5% of 

riders were using the RH service to get to or from a transit station [14]. This implies that 94.5% 

of RH trips do not service the FLM arrangement. However, the small sample size challenges the 

range of application and the question with a binary response option minimizes bias. Moreover, 

the utility of the surrounding transit network tests the application of this finding. The transit 

network in Denver has significantly less popularity than that of other US metropolitan cities. 

Hence, the percent of riders using RH for FLM arrangements is likely sensitive to the transit 

network in question. 

 

Nelson and Sadowsky used a difference in differences (DID) modeling by comparing 

transit ridership and operational metrics before and after the entry of RH service(s). Their 

findings concluded that transit ridership increased following the entry of the first RH company, 

then decreased once the second company entered the regional market. The presence of the 

second company led to competition and increased affordability, allowing RH to appeal to more 

people [17].  

 

In 2016, APTA investigated the relationship between emerging modalities and public 

transit. The research areas included seven major US cities: Austin, Boston, Chicago, Los 

Angeles, San Francisco, Seattle, and Washington, DC. Researchers executed in-depth interviews 

with transportation officials and surveyed network users. The most relevant finding was the use 

of shared modes; i.e., RH services are used most frequently for social trips during hours when 

public transit is not in operation or has reduced services. Hence, when transit operations are 

reduced, RH services make up for decreased transit availability. Results from the survey show 

that 54% of respondents had used “ride-sourcing” (RH) to serve a recreational or social trip 

within the previous 3 months. Further, only 21% of respondents claimed to have used these 

services for commuting within the previous 3 months. However, this survey does not look at the 

trend in demand by trip type over a period of time. The percentage of respondents claiming to 

have used ride-sourcing for a specific purpose does not encapsulate the frequency of demand by 

type. For example, 21 out of 100 respondents could use RH services for commuting on a daily 

basis, whereas 74 out of 100 respondents only used RH once a week for recreational/social trips. 

The cumulative demand by trip purpose cannot be represented through a one-time survey [18]. 

 

While these methods are useful and highly qualitative, they assume an ideal condition 

that respondents are not biased. Hence, the results are vulnerable to many biases. The first, 

hypothetical bias, is the propensity of humans to view survey questions hypothetically to an 

extent that skews the responses’ validity. Second, strategic bias is the tendency for a respondent 
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to evaluate their hypothetical behavior such that it favors the response with greater perceived 

value. Lastly, framing bias is how the phrasing and wordage of a question influences its 

interpretation.  

 

The overwhelming use of surveys and interviews serves as an opportunity to deploy a 

more quantitative study that focuses on individual trips and their corresponding LOS attributes. 

Until we can collectively determine the effect of RH, designers, planners, and politicians cannot 

make sound decisions. We hope to contribute to the field by pioneering new methods and 

approaches for analyzing the impact of RH. The use of source data-based research will not only 

result in greater clarity and insight but will illuminate gray areas with more intensity. From this, 

empirical studies should be refined to focus on investigating these ambiguous regions and 

identifying their sources.   
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CHAPTER 3: METHODS 

The primary goal of this research is to answer the research question using trip-based data rather 

than empirical data. Further, to avoid biases in the results from using proprietary data, we chose 

to use publicly available data. We searched for a dataset that included individual spatial and 

temporal trip characteristics to increase the representativeness of the conclusions. Unfortunately, 

because all TNCs are privately owned, the availability of trip data is extremely limited. We 

exhausted many avenues of resources and discovered that the only publicly available dataset 

containing individual trip attributes was provided by the City of Chicago’s Online Data Portal. 

This dataset is titled “Transportation Network Providers (TNP) – Trips” and contains records of 

all RH trips within the city limits of Chicago, Illinois from November 2018 to the present day 

[19]. The dataset is further explained in the subsection, Data. We chose to use this as the only 

RH trip dataset, and thus the study area spans the city of Chicago. In the following subsection, 

Area of Study, we introduce relevant characteristics of the city of Chicago. 

 

Area of Study 

Geography and Demographics of Chicago 

Per the US Census, the population of Chicago was estimated to be 2,705,994 persons in July 

2018. The city spans 227.63 square miles and contains 801 census tracts, according to the 2010 

Census. As of 2010, 21.2% of the population was 18-years or younger and 12% of the population 

was 65+ years [20]. From 2014–2018, there was an average of 1,056,118 households, with a 

median income of $57,238 [21]. As of 2015, 26.5% of households did not own a vehicle, and the 

average vehicles owned per household was 1.11 [20]. 

 

Public Transit in Chicago 

Chicago Transit Authority (CTA) is the second largest transit agency in the US as of 2018 [22]. 

CTA runs and operates bus and rapid transit (rail) services within the city and the 35 surrounding 

suburbs. There are 1,864 buses that run 129 routes and 1,429 rail cars that serve 145 stations 

[23]. Additionally, CTA operates certain routes and lines during early morning and late-night 

hours, and some operate all hours of the day. 

 

Ridehailing Services in Chicago 

Historical data on the services present during the study period (June 2019) is unavailable at this 

time. However, as of January 2020, three personal-car RH services operate in the City of 

Chicago: Uber, Lyft, and Via [24].   

 

Data 

TNP (Transportation Network Providers) – Trips Dataset 

This dataset served as the source data for RH trips and was obtained from the City of Chicago’s 

online data portal. The dataset contains 129 million unique TNC trips that span from November 

2018 to the present day and is aggregated by the month [19]. Given the expansive size, we chose 

to only study one month: June 2019. This month was selected because it does not contain any 

nationally recognized holidays that could hinder the representativeness of the results. All RH 

trips with a start time on or after June 1, 2019 12:00:00 AM and before July 1, 2019 12:00:00 

AM are included in this data set. The dataset contains 21 fields per trip, including a unique 
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identifier, trip start and end time, pick-up and drop-off longitudinal and latitudinal coordinates, 

pick-up and drop-off census tract ID, trip fare, and if the ride was authorized as “shared” through 

the respective TNC app. A full list of the dataset attributes can be found in Appendix A. 

 

Public Transit Data (General Transit Feed Specification [GTFS] Dataset) 

To perform a public transit network analysis in ArcGIS, the GTFS dataset corresponding to the 

area of interest is required as an input. GTFS is a publicly available data feed hosting real-time 

and fixed components of transit agencies’ schedules. This data is uploaded by the responsible 

agency and is readily available through an online database published by OpenMobilityData [25]. 

For each transit agency, there exist many subsets of data, spanning approximately 2-month 

periods. The dataset holds the corresponding schedules, routes, stops, and transfers for the time 

period. GTFS serves as an open-source data feed that can be used by public and private entities. 

With respect to this report, this dataset will be integrated into ArcGIS such that the Network 

Analysis program can identify the corresponding transit route under spatial and temporal 

conditions.  

 

Street Centerlines 

To create a network geodatabase in ArcGIS, the user must have an existing feature layer 

consisting of the roadway centerlines. Hence, a SHP file of all street centerlines within the limits 

of the city of Chicago was obtained from the City of Chicago Data Portal [26]. 

 

Census Tract Boundaries 

A SHP file of all census tract boundaries was downloaded from Chicago’s Data Portal. This file 

was used to estimate the census tracts containing the origin and destination for trips with 

corresponding null values in the raw dataset [27].  

 

Preliminary Analyses 
The first preliminary data analysis aggregates RH trips by calendar day to provide a visual 

representation of the demand by type of day (Monday–Sunday). Figure 3 below is a bar graph 

depicting the results of this analysis.  

 

For purposes of clarity, the legend in Figure 3 is explained below. Further, this legend 

applies to Figure 4 and Figure 5. With reference to the legend in Figure 3, the bars shaded blue 

correspond to the volume of trips on the weekend (Saturday and Sundays), whereas the bars 

shaded orange correspond to weekday trip demand. Each bar is split into two different color 

intensities: a darker and lighter section. The darker portion of each bar represents the number of 

trips classified as “pooled” (shared) by the RH service. The lighter portion of each bar represents 

the volume of single occupancy trips.  
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Figure 3 – Daily ridehailing trip counts in the City of Chicago during June 2019. 

First, this figure demonstrates that single occupancy RH trips have significantly greater 

demand than pooled trips. When compared to driving alone, this modality has a higher 

contribution towards congestion because its utility is comparably low due to deadheading 

mileage. 

 

Referring to the temporal trend of demand during the weekdays, it is clear that there is an 

upward trend in demand from Monday to Friday. Let us assume that there exists a baseline 

demand for RH commuting trips. With the traditional work week spanning Monday to Friday, 

we can infer that each workday will have this baseline demand. However, as shown in Figure 3, 

there exists growth in demand from Monday to Friday. Hence, in addition to the baseline volume 

of trips, there is a volume of trips that are not work-related, or are work-related trips taken by 

individuals who do not regularly commute via RH.  

 

The next two figures show the distribution of trips by starting hour; weekday trips are 

depicted in Figure 4 and weekend trips are depicted in Figure 5. For each hour, the bar height 

represents the number of trips in June 2019 starting during the corresponding hour’s period.4 The 

purpose of these two figures is to compare the temporal trend of demand between weekday and 

weekend trips.  

 

When comparing between Figure 4 and Figure 5, it should be noted that the range of the y-

axes are different—Figure 4 has a greater range, spanning twice that of Figure 5. The majority of 

this difference can be attributed to the numbers of days spanned per subset of data.  

 

                                                           
4 A hour’s “period” spans the 60-minutes following the hour. For example, if the 8:00 bar has a height of 5,000 trips, 

then there were 5,000 RH trips started betweed 8:00:00 and 8:59:59. 
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Figure 4 – Weekday trip counts (sum) by hour. 

 

Figure 5 – Weekend trip counts (sum) by hour. 

Let us consider travel behavior between the hours 7 and 19 (7:00 AM–7:00 PM). For 

weekday trips, two demand peaks exist at hours 8 and 16, whereas for weekend trips, peak 

periods are not as distinct. This is a result of a more even distribution of demand between hours 

11 and 22 (11:00 AM–10:00 PM). The more level demand on weekends during this period is 

likely a result of a shift in trip purposes. Work trips are commonly made on a predictable 

schedule due to traditional 8–5/9–5 jobs. On weekends, people tend to allocate their time for 

social outings, leisure activities, and shopping. These activities have the opportunity to occur at 

any hour on the weekends, as opposed to outside of working hours on weekdays. Due to the 

nature of these activities, their duration is less predictable and can span a greater range of time. 

Inherently, with social and leisurely activities, the demand for parking (short-term and overnight) 

increases. This demand evolves into competition when the parking supply is limited. 

Consequently, in densely developed regions and cities, such as Chicago, parking availability is 

low. Overall, the growing population of drivers influences congestion and competition for 

parking. In conditions where this is of concern, RH services become a more attractive option. 
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Search time, access and egress walking time, and the parking fare are all eliminated with the 

operational structure of RH. Additionally, being a passenger, as opposed to being a driver, allows 

for the redirection of attention and energy to activities that originally could not have been 

performed while driving. 

 

Outside of the 7:00 AM–7:00 PM hours on weekends, the global peak exists at hour 0 

(12:00 AM).  We can assume that this spike in demand is due to social-based activities [6, 18]. 

RH services provide transportation for people who cannot legally drive due to alcohol 

consumption. The consumption of alcohol in combination with a demand for travel yields 

increased demand for modes that do not require personal-auto use.  

 

We then transition to a preliminary comparison of trip per mode (CTA bus and rail, and 

RH). The stacked column bar chart below (Figure 6) shows the total number of trips aggregated 

by day, where each bar is composed of the volumes of trips by mode (RH, bus, and rail). When 

interpreting this figure, it is important to consider that the number of transit trips are unlinked. As 

an example, if a rider took the bus from Oi to Di with two transfers, this one trip (O-D) is 

subdivided and classified as three separate trips: (1) Oi to stationA, (2) stationA to stationB, and 

(3) stationB to Di. Whereas an RH trip from Oi to Di would count as one trip. Thus, if the average 

number of transfers is greater than zero, then the proportion of transit trips to RH trips would be 

overestimated. However, the trend in percent-share by mode remains significant. The volume of 

transit trips on weekdays is significantly higher than that of weekends, which can be attributed to 

commuting trips. Moreover, it appears the average percent-makeup of the volume of transit trips 

is shared evenly between bus and rail. Excluding June 8th and 9th, the volume of RH trips appears 

to increase from Thursday to Saturday. Further, the proportion of RH trips to transit trips is 

greatest on Friday, Saturday, and Sunday. This can likely be attributed to an increase in transit 

disutility due to a significant decrease in transit frequency and in-operation lines/routes. Hence, 

longer wait times and decrease in serviceability yield a favoring towards RH services.  

 

 
Figure 6 – Trip counts per mode by calendar day. 
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Data Processing 
Data processing was completed in three steps, with the ultimate output being the probability of a 

rider choosing public transit. This probability is derived from a multinomial nested logit (MNL) 

model based on the Chicago’s travel behaviors in 2015 [13]. This model and its relevancy are 

described later in this section.  

 

As a brief overview, the first two steps were performed in the program, ArcGIS, using 

two separate tools: (1) Route Analyst and (2) Spatial Join. These two steps are novel in that 

GTFS data and source data are combined to compute the time-conscious transit-equivalent route. 

The output of these two steps, per RH trip, were a transit-equivalent trip and the number of 

transfers required to complete the trip. For the third step, results from the route analysis were 

input into our Matlab code to continue processing procedures and to compute 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴).  
 

STEP 1: Transit-Equivalent Trip Generation 

For the first step, the Route Analyst tool within the ArcGIS Network Analysis toolbox was 

employed to determine the transit-equivalent route for each RH trip. This tool processes a set of 

trips containing 2+ stops (per trip), and outputs the most efficient route given a specified travel 

mode (driving, public transit, or walking) and a specified impedance (travel time, walk time, or 

travel cost). Prior to running the tool, the travel mode was set to “public transit” and the 

impedance to “walk time.” These conditions make the solver utilize public transit when possible 

and minimize the walking time to, from, and between stops.  

 

CTA’s GTFS data for June 2019 was then loaded into the program using the GTFS 

toolkit. Data consisted of files defining the transit network’s geometric and temporal structure. 

This dataset provides the means to determine an RH trip’s (O-D pair and start time) public transit 

alternative using CTA only.  

 

The trip data was imported as text files, where each calendar day had a separate text file 

containing all the trips with the corresponding start date-time. For each day, trips were 

aggregated by start times using 15-minute intervals; i.e. 12:00:00 AM, 12:15:00 AM, etc. For 

each RH trip, the pick-up location was defined as the first stop and the drop-off location was 

defined as the second and final stop.5 With reference to the GTFS dataset and the output transit 

network, the Route Analyst tool then output the most efficient transit-equivalent route per RH 

trip. The output from this tool provided LOS metrics of the transit-equivalent trip, such as the 

TTT, WT, and the start and end times. Route Analyst also outputs an ArcGIS layer that contains 

polylines spatializing all routes. However, these polylines do not contain any information 

regarding which transit lines and stops were used. When this layer overlaid the transit network 

layers, each route would visually intersect the transit network. Considering this, we manipulated 

the spatialized data using ArcGIS’ analytical tools to identify all transit network elements 

intersected (i.e., transit stops, transit lines, transit stations). 

 

                                                           
5 It is important to note that all pick-up and drop-off locations in the dataset were the coordinates of the centroid of 

the census tract that the location lies within. 
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STEP 2: Transfer Count Estimation 

In the second step, data were first processed in ArcGIS and lastly in Matlab. For Part 1 of this 

step, we used the Spatial Join function to calculate how many “stop connectors” were contained 

in each route. This term and its corresponding step are explained in the proceeding paragraphs. 

The output of the spatial join served as input for Part 2, the calculation of transfer count per route 

using Equation 1. 

 

As a result of integrating the GTFS dataset, feature layers were created separately, 

containing transit stops and lines that are respectively contained in the network layers, Stops and 

LineVariantElements, and their counterparts, Stops on Streets and Stop Connectors. Attributes in 

the Stops and Stops on Streets layers are represented as points, whereas attributes in the 

LineVariantElements, Stop Connectors, and Streets layers are represented as polyline elements 

(see Figure 7).  

 
Figure 7 – GTFS network dataset layers. 

The transit stops (Stops) are spatially offset from the street centerlines (Streets) because 

the GTFS transit lines (LineVariantElements) do not spatially overlap the streets for modeling 

purposes. When route analysis is performed, the transit-equivalent route will overlap the streets 

when not using transit (OVTT)—i.e., when walking to/from transit—and will overlap the transit 

routes when using transit (IVTT).  

 

Transit stops are reflected onto the street they are offset from, generating a second 

element that is stored in a new layer called “Stops on Streets.” Thus, for each transit stop, there 

are two corresponding points (1) on the transit network and (2) on the street centerlines. After the 

second point is created, a polyline element is generated that connects the two points. These 

polylines are called “stop connectors.” Refer to Appendix B for a map of the GTFS-integrated 

CTA transit network developed in ArcGIS.  

 

When boarding or deboarding transit, the route intersects both points and overlaps the 

corresponding stop connector. Thus, it can be assumed that if a route contains (overlaps) a stop 

connector, the rider is either accessing or egressing a transit service. To encourage program 

efficiency, we used a non-visual program, Matlab, to execute this calculation. The table of 

transit-equivalent trip characteristics and results from the spatial join were then imported into 

Matlab, and the equation below was used for each trip:  
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 (1) 

 

STEP 3: Probability Estimation 

To estimate the probability of a rider selecting public transit to service their O-D pair, a utility 

model and logit transformation formulae are required. However, the scope and limited timeline 

of our project made it impossible to develop a utility model. Hence, we transitioned our efforts to 

finding an appropriate utility model and logit transformation in existing literature. 

 

Moreover, we sought out a model that contained obtainable input values and that was derived 

from a sample with similar demographics and travel behaviors. We reviewed many models based 

on the nature of the research, the study area, and modalities modeled, and then compared our 

methods and dataset against these models to determine which existing utility model was most 

suitable.  

 

The extensive literature review resulted in a selection of an MNL model developed by 

Javanmardi et al. [13]. The basis for development of their mode choice model was a revealed 

preference survey. Traditionally, mode choice models are developed from TAZ (traffic analysis 

zones) level data that uses average travel times. However, Javanmardi et al. used a Google Maps 

API (Application Programming Interface) and RTA’s Goroo TripPlanner to obtain personal trip 

data that better represents individual travel behavior. Such data included point-to-point travel 

times, and feasible alternatives and their LOS attributes [13]. Overall, this MNL model is used to 

measure variance in mode choice behaviors regarding alternative transportation, with increased 

accuracy from RP surveying.  

 

Coincidentally, this model was developed using trip data from the same area of study as 

our project: Chicago, Illinois. Thus, this model allowed for increased representativeness of travel 

behaviors to a greater degree of accuracy. Lastly, the study year (2015) of the authors’ research 

is appropriate in that RH was introduced to Chicago prior to that time. Accordingly, their model 

should capture any evolution of mode choice behavior and preferences towards or against 

alternative transportation. 

 

The model’s formulae are represented by the equations below (Equations 2–6). Given 

that the model was used for a range of modes, the subscripts were modified to align with the 

variables in this report. The constants, coefficient values, and variables are mode-specific and 

were provided in the report corresponding to the model [13]. 

 

Utility of Transit, UTransit 

 

 

 

𝑈𝑇𝑟𝑎𝑛𝑠𝑖𝑡 = 2.93 − 1.04𝑇𝑇 − 0.13𝑇𝐶 − 0.17𝑛𝑡 − 0.77𝐻𝐻𝐼
+ 0.45𝑤𝑟𝑘𝑡𝑟𝑝 − 0.39𝑑𝐴 − 0.23𝑑𝐸 

(2) 

 

Probability of Selecting Transit, PTransit 

 

 𝑃𝑇𝑟𝑎𝑛𝑠𝑖𝑡 =
𝑒𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡

1 + 𝑒𝑈𝑡𝑟𝑎𝑛𝑠𝑖𝑡
 (3) 

𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 =   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠

2
 − 1 
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Utility of CTA, UCTA 

 

 
𝑈𝐶𝑇𝐴 = −0.39𝑇𝑇 − 0.059𝑇𝐶 − 0.33𝑛𝑡 + 0.022𝑛𝑆𝑡𝑜𝑝,𝑂 + 0.0089𝑛𝑆𝑡𝑜𝑝,𝐷

+ 0.77𝑠ℎ𝑝𝑡𝑟𝑝 +  1.78𝑤𝑟𝑘𝑡𝑟𝑝 − 0.46𝐻𝐻𝐼 
(4) 

 

Probability of Selecting CTA, PCTA 

 

 𝑃𝐶𝑇𝐴 =
𝑒𝑈𝐶𝑇𝐴

1 + 𝑒𝑈𝐶𝑇𝐴
 (5) 

 

 

Probability of Selecting CTA given Transit Selection, P(Transit|CTA) 

 
 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) =  𝑃𝑇𝑟𝑎𝑛𝑠𝑖𝑡 × 𝑃𝐶𝑇𝐴 (6) 

 

The equations were executed in the respective order per trip, with Equation 6 outputting 

the final probability used in the analyses.   
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Table 1 outlines the input attributes in the above formulae, their corresponding definition, 

and their availability with respect to the RH trip dataset. 

 

While the derivation of this model exhibited strong similarities to this study’s 

characteristics, it did contain several caveats. The attributes of the RH trip dataset used in this 

report did not completely satisfy all required model inputs, and therefore missing values were 

generalized, estimated, or calculated. The determination of these missing values required 

multiple assumptions. Following   
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Table 1, each assumption-based variable, and its calculation process(es) is explained in 

greater detail. 

 

Table 1 is located on the next page for formatting purposes. 
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Table 1 – Utility Model Input Variables 

Source Variable Definition 

Output from 

spatial analysis 
TT Total travel time (hr); wait time + walk time + transit time 

Calculation; 

assumption-based 
TC Total travel cost (USD); total cost of fare for transit trip 

Spatial Analysis nt Number of transfers (transfers);  

US Census 

Bureau6 
HHI Household income (10-5 USD); 

Calculation; 

assumption-based 
wrktrp 

Purpose, Work trip (1/0); if trip purpose is for work, wrktrp 

= 1. Assumed if trip start day = weekday, and start hour in 5 

a.m. – 7 p.m., trip purpose was for work 

Calculation; 

assumption-based 
dA 

Access distance (km); walking distance from origin to first 

transit stop (pickup) 

Calculation; 

assumption-based 
dE 

Egress distance (km); walking distance from last transit stop 

(drop-off) to destination 

Spatial Analysis nStop,O 
Number of transit stops in origin zone (stops); total number 

of transit stops within census tract containing origin 

Spatial Analysis nStop,D 

Number of transit stops in destination zone (stops); total 

number of transit stops within census tract containing 

destination 

Calculation; 

assumption-based 
destCBD 

Purpose, Destination in central business district (CBD) 

during rush hour (1/0); if trip destination is within the 

geographic boundary of the Chicago CBD, and started 

during rush hour, destCBD = 1. 

 

Household Income (HHI): given the privatization of the RH dataset, we were unable to access 

the socioeconomic characteristics of each individual ride-hailer. To compromise, we defined 

the HHI for a rider using a dataset containing the average HHI per census tract. We defined 

the HHI to equal the average HHI of the origin if the trip was executed on a weekday 

between 5:00 AM and 12:00 PM, or of the destination if the trip was executed on a weekday 

between 12:00 PM and 7:00 PM. For all trips outside this boundary, the HHI was defined as 

the average between the origin and destination HHI. 

 

Four variables outlined below are a function of two census tracts, which contain the 

origin and destination. These variables depend on the census tract IDs, as the ID is used to index 

data from related tables. The source dataset contained the GPS coordinates for the O-D census 

tracts, and the corresponding tract IDs. However, a subset of trips exhibited null values for the 

tract IDs. To remedy this, we estimated the corresponding tract IDs via a minimum distance 

program in Matlab. First, we obtained a SHP file of the geographic boundaries for all census 

tracts from the Chicago Data Portal. Once imported into ArcGIS, geometric calculations were 

performed to output each tract’s centroid in GPS coordinates (latitude, longitude). This output 

                                                           
6 Due to confidentiality of trips, we did not have access to demographics of ridehailers. Therefore, we assumed the 

income for each rider to be the 2018 average household income (HHI) of all persons in the City of Chicago from the 

US Census Bureau [20] QuickFacts Chicago city, Illinois, United States Census Bureau.  
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table was imported into Matlab as a matrix. Using each trip’s O-D latitude and longitude, the 

distance between each tract and O-D coordinates was calculated. The census tract ID 

corresponding to the smallest distance value was selected and replaced the null value for the 

origin or destination tract value.  

 

Number of Transit Stops per O-D Zone (nStopOrigin, nStopDest): these two attributes were a 

function of the O-D census tracts per trip and were calculated as the number of transit stops 

in the corresponding origin or destination zone (census tract). The number of transit stops per 

census tract were calculated using a spatial join in ArcGIS, where the output was an 801x2 

table with each census tract ID and the corresponding number of transit stops within the tract 

boundary. Indexing was then used to retrieve and append the number of transit stops per 

census tract to the master table. 

 

Saturday/Sunday Classification: To test true for the attributes below (nStopOrigin, nStopDest, 

destCBD), a trip could not have been serviced on a Saturday or Sunday. Therefore, to classify 

a “weekend” (Saturday or Sunday) trip, we composed a vector of June 2019 calendar days 

corresponding to each pair of Saturdays and Sundays. If a trip’s start calendar day was 

identified as a weekend day, then it resulted in a false value. Therefore, any trip taken on  

06-[1,2,8,9,15,16,22,23,29,30] -2019 tested false for destCBD and wrktrp. 

 

Destination within Central Business District at Rush Hour (destCBD): this binary attribute 

indicates if the destination of a trip lies within the central business district and was serviced 

during rush hour. To determine this value, we first determined which census tracts lay within 

Chicago’s central business district (CBD). Using a SHP file containing the geographic 

boundary of the CBD, we spatially joined it with the aforementioned census tract centroids 

layer using the “completely within” condition [27]. The output of this procedure was a table 

of 20 census tracts, their IDs, and GPS coordinates. The second part of this test was to 

determine if the trip started during the peak period. We assumed there to be two 3-hour peak 

periods (AM and PM). The AM peak period occurred between 6:00:00 and 9:00:00 AM, and 

the PM peak period occurred between 16:00:00 and 19:00:00 PM. For a trip to test “true” 

(destCBD = 1), we first determined if the destination census tract was a member of the CBD 

census tracts array. If true, the trip start hour was then tested against the two peak periods. If 

the trip start hour had a value in the following vector, [6,7,8,9,16,17,18,19], then destCBD = 

1, and otherwise, destCBD = 0. 

 

Trip Purpose: Work (wrktrp): similar to destCBD, this binary attribute indicates if the trip was 

a commute to or from work. As stated previously, due to the anonymity of the dataset, we did 

not have individual details on trip characteristics, such as the trip purpose. To accommodate 

for this, we made a conservative assumption that all trips with a start time between 5:00:00 

and 19:00:00 were work-related/commuting trips. This ensures the exclusion of any social or 

leisurely trips taken on weekends and/or during late-night hours.  

 

Following the analysis of the observed data (Replaceability Analysis) is a sensitivity 

analysis of 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴). Seven key attributes of the utility model were selected and 

analyzed to determine their influence on the probability value. The results from these analyses 
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can be further used by transit agencies to identify how altering services and modifying operations 

could either increase or decrease ridership. 

 

Analyses 
In this section, we will introduce the three analyses used and their respective methods. Below is a 

list of the three analyses and their relevancies. 

1. Replaceability Analysis: per RH trip, identify the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) of the corresponding 

transit-equivalent trip. These results will be summarized by group type (R/NR). 

2. Time Value Analysis: compare the travel times and total fare/cost for each RH trip and its 

transit-equivalent trip. 

3. Sensitivity Analysis: explore the sensitivity of 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) with respect to seven 

variables in the utility model, which are introduced later in this section.  

 

Replaceability of a Transit Trip 

Ultimately, to determine if a RH trip “replaced” its transit-equivalent trip, we computed the 

probability of using CTA, given the selection of transit. The magnitude of these probabilities 

indicates the viability of public transit serving a specified trip and depends on how favorable the 

trip’s LOS attributes and trip-specific characteristics are to the rider. We chose to classify a 

transit-equivalent trip by its replaceability, categorized by two groups: replaced (R) trips and not-

replaced (NR) trips. Initially, we assumed the threshold value distinguishing a trip being 

“replaced” (R) or “not replaced” (NR) to be 0.5. Thus, all trips with a 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  <  0.5, 

were assumed to not have a viable public transit-equivalent trip and were deemed “not replaced” 

(NR) by public transit. Conversely, all trips with a 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  ≥  0.5, were assumed to 

have a reasonable and competitive public transit-equivalent trip and were classified as “replaced” 

(R) by public transit. Following the first sensitivity analysis trial, we found that trips with 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) close to 0.5 switched between the R and NR groups. These volumes of trips 

were considered fuzzy and unreliable indicators of true mode-choice modeling behavior. Thus, 

we chose to implement a buffer, where trips with 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  =  (0.45 − 0.55) were 

grouped into the Buffer Zone and were removed and excluded from the summary statistics. This 

modification is represented by the conditional statement below.  

 

For an individual RH trip, T, 

 

 
Following the grouping of each trip, statistical measurements were calculated for each 

group and the undivided dataset as a whole. These values are introduced and discussed in the 

Results section. 

 

  

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑟𝑜𝑢𝑝𝑇 =  

𝑁𝑜𝑡 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑑 (𝑁𝑅), 0 ≤ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) ≤ 0.45

𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑑 (𝑅), 0.55 ≤ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) ≤ 1.0

𝐵𝑢𝑓𝑓𝑒𝑟 𝑍𝑜𝑛𝑒, 0.45 < 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) < 0.55
 



23 

 

Time Value Analysis 

The most notable differences between the RH trips and transit-equivalent trips appeared to exist 

in the cost and travel times per trip. To further explore this relationship, we compared the 

magnitude and sign of each difference between both parameters. For a single trip, there were 

four possible outcomes (I-IV) which are outlined in Figure 8.  

 

  Total Travel Time 

(TTT) 

 RHi 

- 

Transiti 

+ - 

Fare 

+ IV III 

- I II 

Figure 8 – TTT vs. fare outcome scenarios. 

 
 

Verbal explanations for each outcome are given below: 

I. These are trips where, in comparison to the RH trip, the transit-equivalent trip was 

less expensive, but slower. 

II. These are trips where, in comparison to the RH trip, the transit-equivalent trip was 

less expensive and faster.  

III. These are the trips where, in comparison to the RH trip, the transit trip was quicker, 

but more expensive.  

IV. These are the trips where, in comparison to the RH trip, the transit-equivalent trip was 

more expensive and slower. 

Sensitivity Analysis 

To explore how the attributes of a trip affect the probability of choosing CTA, we conducted a 

parametric sensitivity analysis of 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) with respect to the following decision 

variables:  

1. Transit stops per census tract (SiT) 

2. Base fare (BF) 

3. Transfer cost (TC) 

𝑓(𝑥) =

 
 
 
 

 
 
 

𝐼, 𝑇𝑇𝑇:     𝑇𝑟𝑎𝑛𝑠𝑖𝑡 > 𝑅𝐻
  𝐶𝑜𝑠𝑡:    𝑇𝑟𝑎𝑛𝑠𝑖𝑡 < 𝑅𝐻

𝐼𝐼, 𝑇𝑇𝑇:     𝑇𝑟𝑎𝑛𝑠𝑖𝑡 < 𝑅𝐻
        𝐶𝑜𝑠𝑡:    𝑇𝑟𝑎𝑛𝑠𝑖𝑡 < 𝑅𝐻

𝐼𝐼𝐼, 𝑇𝑇𝑇:     𝑇𝑟𝑎𝑛𝑠𝑖𝑡 < 𝑅𝐻
  𝐶𝑜𝑠𝑡:    𝑇𝑟𝑎𝑛𝑠𝑖𝑡 > 𝑅𝐻

𝐼𝑉, 𝑇𝑇𝑇:     𝑇𝑟𝑎𝑛𝑠𝑖𝑡 > 𝑅𝐻
𝑥, 𝐶𝑜𝑠𝑡:    𝑇𝑟𝑎𝑛𝑠𝑖𝑡 > 𝑅𝐻
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4. Household income (HHI) 

5. Total travel time (TTT) 

6. Walk time (WT) 

7. Airport pass price (Airpass) 

 

The 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) was recalculated under a set of percentage-change conditions for 

each decision variable. Per variable, there were a total of 20 trials, where the observed value of 

the variable was incrementally adjusted in increments of 5%, ranging from -50% to +50%. Given 

that each variable was tested independently, there were a total of 140 trials. Variables 2, 3, 4, and 

7 were fixed values defined at the beginning of the program. For variables 1, 5, and 7, the 

original values were unique per trip, and thus the new was is dependent on the trip attributes and 

were not a fixed value. The algorithm was run under the new condition, and a new 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) was output for all trips, and per group (R/NR).  

 

Assuming that both groups share the same standard deviation, we can estimate σ by calculating 

the pooled standard deviation, 𝑠𝑝, with the equation below. The pooled standard deviation for the 

observed and sensitivity condition data sets, for group R or NR, is: 

 

 𝑠𝑝(𝑔𝑟𝑜𝑢𝑝, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = √
[(𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 1) ∗ 𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

2 ] + [(𝑛𝑖 − 1) ∗ 𝑠𝑖
2] 

(𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑛𝑖) − 2
 (7) 

Where, 

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = the number of trips in the observed group 

𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = standard deviation of the observed group 

𝑛𝑖 = number of trips in the sensitivity group 

𝑠𝑖 = standard deviation of the sensitivity group 

 

It should be noted that 𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are fixed values under all sensitivity 

conditions. These values are shown in Table 3 in the Results and Discussion section.  

 

To measure the level of influence and statistical relationship of each decision variable 

and the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴), we performed a two-tailed pooled t-test. Considering there is no 

overlap between the observed and sensitivity condition data, the two-tailed test was most 

suitable. A t-test was performed for each group (trip type): replaced (R) and not replaced (NR). 

Per group and under each sensitivity condition (decision variable and percentage-change), the 

mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) was compared between the observed and sensitivity data sets. The 

relationship between the t-statistic and the critical value indicate whether the null hypotheses 

stated below are rejected or accepted: 

 

𝐻𝑁𝑢𝑙𝑙 (𝑅) = The 𝑃̅(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) 𝑜f the observed 𝑅 group is not statistically 

different from the  𝑃̅(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) of the sensitivity 𝑅 group. 
 

𝐻𝑁𝑢𝑙𝑙 (𝑁𝑅) = The 𝑃̅(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) of the observed 𝑁𝑅 group is not statistically 

different from the  𝑃̅(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) 𝑜f the sensitivity 𝑁𝑅 group. 
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If the t-statistic is greater than the critical value, then we reject the null hypothesis and 

refer to the alternative hypothesis. The alternative hypothesis opposes the null by concluding that 

there is a statistically significant difference between the observed and the sensitivity condition 

data. Meaning, the influence of the decision variable on the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) is expected to have 

an effect on the whole population, similar to the effect of the sensitivity condition.  

 

The following equation was used to compute the t-statistic per variable and group for 

each sensitivity condition (Equation 8): 

 

 𝑡𝑖 = ||
𝑃̅𝑖 − 𝑃̅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

√ 
𝑠𝑖2

𝑛𝑖
  +  

𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑2

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

|| (8) 

Where,  

𝑖 = sample trips of group g (R or NR), decision variable var, and percent-change condition 

%∆.  

𝑃𝑖  = mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)  
𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  = mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) for group g (R/NR), decision variable var, and 

percentage-change condition %∆. 

𝑠𝑖= mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) for group g (R/NR), decision variable var, and percentage-

change condition %∆. 

𝑠𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  = mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) for group g (R/NR), decision variable var, and 

percentage-change condition %∆. 

𝑛𝑖= sample size for group g (R/NR), decision variable var, and percentage-change 

condition %∆. 

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  = mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) for group g (R/NR), decision variable var, and 

percentage-change condition %∆. 

 

In the next chapter, Results and Discussion, the outcome of the three aforementioned 

analyses will be presented.  
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CHAPTER 4: RESULTS & DISCUSSION 

The following section introduces a trip-classification system, results from the utility model, and 

replaceability analysis; i.e., 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) calculation, sensitivity analysis, and time value 

analysis. Before presenting the results, we will introduce a classification system of transit-

equivalent trips, which was developed in attempt to further group trips based on modality used. 

The ArcGIS programs output the “transit-equivalent” trip for each RH O-D pair, although after 

spatially analyzing the results, the solution did not necessarily use transit. Hence, we created a 

system that distinguishes trips based on modalities used, which is explained in Classification of 

Transit-Equivalent Trips. Following the aforementioned section, we will present the findings in 

the following order: 

I. Replaceability Analysis 

II. Time Value Analysis  

III. Sensitivity Analysis 

 

The results are best represented by visuals, as there are many contributing factors that 

must be known for accurate analysis. Given the extensivity of the results, t-test results and 

additional supporting figures are located in the appendices. 

 

Before proceeding, the following should be taken into consideration. As mentioned in the 

Data section, there were 8,136,461 RH trips in the raw dataset. Upon preparing the data to be 

input into ArcGIS, we found that 186,559 trips did not have geographic coordinates for their 

origin and/or destination. Given that coordinates are required input for the Route Analysis tool, 

we removed them from the dataset for analysis. The remaining 7,949,902 trips were processed 

and all results are representative of that sub-selection of the raw dataset.  

 

Classification of Transit-Equivalent Trips 

For clarification, a RH trip’s “transit-equivalent trip” is its alternative solution to its O-D pair 

using transit and/or walking, and is output from the ArcGIS Route Analyst. All transit-equivalent 

trips contain trip legs of walking, but not all transit-equivalent trips utilize transit. We refer to the 

transit-equivalent trips that use transit, as transit-utilized trips. For these trips, a walking distance 

is executed during the FLM arrangement and between transfers (if applicable). We refer to the 

transit-equivalent trips that do not utilize transit as walk-only trips; within this class are two sub-

groups detailed later. These are trips that can be most efficiently serviced by only walking rather 

than using transit. Examples could include trips where the access and egress time required to use 

transit is comparable to the direct walk time from origin to destination. Below, we provide 

definitions per class, and introduce the two sub-classes for walk-only trips. Following these 

definitions, Table 2 summarizes the mean travel times per group. 

 

1) Transit-Utilized Trips: output trip for which a rider uses at least one form of transit (bus 

and/or rail) to complete. These trips exhibit a 𝑇𝑇𝑇 >  𝑊𝑇. The difference between the 

TTT and walk time is the transit travel time. The census tract of the origin and destination 

must be different. 

2) Walk-Only Trips: output trip where the rider does not utilize transit and the trip is 

assumed to be completed via walking. Thus, the transit travel time is non-existent such 

that 𝑇𝑇𝑇 =  𝑊𝑇. 
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a. Between-Tracts Trips: trips where the origin and destination census tracts are 

different, and therefore the 𝑇𝑇𝑇 >  0. These trips are distinguishable from the 

transit-utilized trips in that the total travel time equals the walk time.  

 

 
𝑇𝑇𝑇 = 𝑊𝑎𝑙𝑘 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 (9) 

Considering Equation 9, if TTT equals the walk time, then the transit travel time 

must equal TTT-walk time (0). 

 

b. Within-Tract Trips: walk-only trips where the origin and destination lie within the 

same census tract, and thus the GPS coordinates of the origin and destination are 

identical. Considering the algorithm used, the route is calculated based on the 

spatial difference between the origin and destination census tracts. Therefore, if 

the origin and destination have the same geographic coordinates, no spatial 

separation exists between the two, and the program outputs a travel distance of 

zero7. All travel time values are a function of this distance, so the travel times will 

equal zero. 

 
Table 2 – Counts and Mean Travel Times per Trip Classification 

Class 
Trip Count Transit Travel Time Walk Time Total Travel Time 

trips minutes minutes minutes 

Transit-utilized 1 7,143,648 19.31 17.39 36.70 

Between-tracts 2A 507,300 0 18.41 18.41 

Within-tract 2B 298,954 0 0 0 

All Trips 7,949,902 17.35 16.80 34.15 

 

Each class of trips was further analyzed to identify commonalities and differences. In 

doing so, we discovered a source of error in the walk-only (Classes 2A and 2B) trips. For all 

between-tract trips, ArcGIS’ Route Analysis tool was unable to determine a serviceable transit 

route. This is a function of the O-D pair and its start time. For example, the trip may not be 

serviceable due to a transit route’s operating hours. Therefore, the trip’s solution is an alternative 

walking route. With reference to the utility model equations (Equations 2-6), the probability of 

choosing CTA is a function of non-zero variables such as HHI, number of transit stops in the 

origin and destination census tracts, and trip purposes (work, destination in CBD). Therefore, 

without using transit, the calculated utility values will always be non-zero values. Hence, through 

the logit model transformation, the calculated probabilities for walk-only trips will be greater 

than zero. This non-zero value exhibits error by contradicting the lack of transit serviceability of 

the trip. Theoretically, if the trip cannot be serviced by public transit, then the probability of 

selecting it as a mode is zero. As previously mentioned, the transit route is a function of the start 

time and trip O-D pair. Considering the O-D pairs are redefined by the centroids of the census 

tracts of the origin and destination, there lies a possibility for a transit solution to exist if the 

                                                           
7 Although this does not reflect the trip distance, it does indicate trips of relatively short distances considering there 

are 801 census tracts that span the city limits of Chicago. Attention should be focused on the volume of within-tract 

trips—this is the same volume of trips that RH served. We can assume from this output that the destination is within 

walking distance of the origin for a capable user, although the physical workload or environmental constraints (such 

as safety) could challenge this assumption. 
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exact origin and destination locations were used. Thus, we employed a walking distance 

threshold to determine if a trip’s 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) should be reassigned a value of zero. Per the 

Pedestrian Safety Guide for Transit Agencies, people are willing to traverse 0.25–0.50 miles to 

access/egress transit [28]. We assumed a threshold value of 0.75 miles, which is computed as the 

mean of this range multiplied by two to account for access and egress distances. For any trip with 

a walking distance greater than 0.75 miles, the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) was reassigned a value of zero. 

 

Further analysis of trips by classification is included in the next section, following the 

introduction of the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)s. 

 

Replaceability Analysis (Probability of Selecting CTA) 
The 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) estimation is a function of the aforementioned procedures and their 

respective outputs. We then developed a program in Matlab that first calculated any unknown 

required input, and lastly calculated the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴). The results are shared below and are 

categorized based on their replaceability. For ease of recall, the group for a trip, T, is categorized 

by the following conditional:  

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑟𝑜𝑢𝑝𝑇 =  

𝑁𝑜𝑡 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑑 (𝑁𝑅), 0 ≤ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) ≤ 0.45
𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑑 (𝑅), 0.55 ≤ 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) ≤ 1.0

𝐵𝑢𝑓𝑓𝑒𝑟 𝑍𝑜𝑛𝑒, 0.45 < 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) < 0.55
 

Of the 7,949,902 trips output from the route analysis, approximately 8% (794,464 trips) 

had a probability lying within the buffer zone. As mentioned in Chapter 3, these trips are 

excluded from all analyses. Proceeding, all findings and conclusions are representative of R and 

NR groups only. Specific trip counts and standard deviations of these two groups are in the table 

below (Table 3). 

 
Table 3 – Trip Count and Standard Deviation per Trip Group 

Group nobserved Sobserved 

R 2,465,504 0.0775 

NR 4,837,590 0.1261 

 

Altogether, these two groups hosted 7,156,438 trips, equating to 90% of all trips. A 

summary of fundamental parameter means per group is shown in Table 4. Following, we explore 

the degree of skew for travel times, transfer count, and fare in Table 5.  

 
Table 4 – Count and Means per Trip Group Type (Observed Data) 

Group 
Trip Count 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) 
WT TTT Transfer Count Fare 

Std. Dev. 
trips min min transfers $ 

R 2,465,504 0.684 13.22 27.30 0.61 2.48 0.0849 

NR 4,837,590 0.221 18.66 37.16 0.93 2.61 0.1237 

 

Referring to the trip counts in Table 4, approximately 31% of all trips are replaced and 

61% are not replaced, with 8% of trips lying in the buffer zone. The standard deviations for both 

groups are comparable, although the magnitude of 𝜎𝑁𝑅 is slightly greater, which can be 

attributed to the larger sample size. 
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To obtain greater insight into the statistical meaning of the mean, each was compared to its 

corresponding median. Considering that the quantitative relationship between the mean and 

median is not fully indicative of the skew, we calculated Pearson’s Second Coefficient8 for all 

respective group-parameter pairs. The table below shows the results from these calculations 

(Table 5).  

 
Table 5 – Skewness of Parameters per Trip Group Type (Observed Data) 

 

 

Six out of the ten group-variable mean pairs exhibited positive skews ranging from 0.24 

to 92.49. For these pairs, we can conclude that more than 50% of the trips in their respective 

groups are below the mean. Consequently, there exists a volume of trips of greater magnitude at 

a statistically significant distance above the median. The volume of these values and their 

magnitudes directly influence the degree of difference and skew of the data. For example, 

referring to the (NR, TTT) pair, there is a significant positive skew, with a coefficient value of 

92.49. This indicates that there was a notable volume of trips in the RH dataset that had transit 

alternatives, but the LOS of the trip was too low to be competitive. These trips represent O-D 

pairs that have a significant demand, but do not have a viable transit alternative, and thus RH is 

complementary. Moreover, this behavior warrants an opportunity for CTA to implement services 

for these trips.  

 

Referencing the skews for the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴), each group exhibits opposing signs. The 

negative skew for group NR indicates that there exists a greater volume of trips above the 

median (0.235), with 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) values approaching the upper bound, 0.45. Conversely, 

for group R, the positive skew implies there is a greater volume of trips with 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) 
values below the median (0.680) approaching the lower bound value, 0.55. Recall that 10% of all 

trips fall within the buffer zone; i.e., 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) ranges from 0.45 to 0.55. Given this 

percentage of trips exist about the center (𝑃 = 0.5), it is anticipated there are skews pulling 

groups R and NR towards this value.  

 

Referring to the mean TTT values, the value for the R group is 27% shorter than that of 

the NR group, which was expected—a trip is more attractive, and thus more replaceable, if the 

TTT is minimized. More interestingly, the mean WT is approximately half of the TTT for each 

group. This implies that the mean TTT for each group is approximately equal to the mean walk 

time. Thus, the degree of replaceability may not influence the temporal structure of a transit trip. 

                                                           
8 Pearson’s Second Coefficient of Skew is calculated with the following formula:  

3∗(𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛)

𝑠𝑡𝑑.  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Group 
𝑷(𝑻𝒓𝒂𝒏𝒔𝒊𝒕|𝑪𝑻𝑨) TTT (min) Walk Time (min) 

Mean Med. Skew Mean Med. Skew Mean Med. Skew 

R 0.684 0.680 0.131 27.30 25.58 60.95 13.22 12.41 28.62 

NR 0.221 0.235 -0.340 37.16 33.35 92.49 18.66 17.02 39.85 

Group 
Transfer Count Fare ($)    

Mean Med. Skew Mean Med. Skew    

R 0.61 0 21.45 2.48 2.60 -4.24    

NR 0.93 1.0 -1.70 2.61 2.60 0.24    
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Group NR had the higher mean value for number of transfers, at 0.93 transfers. This could be 

explained by its classification as a “not-replaced” trip, which implies the transit-equivalent trip is 

not viable. One primary reason a transit trip may not compete well is a lack of connectivity; poor 

connectivity is indicated by greater wait times and access/egress distances, and increased IVTT 

due to the indirectness of the route. 

 

It should be clarified that there is a zero-dollar fare associated with walking trips. Thus, 

the mean fare values for transit-utilized trips is greater. Further, the mean transfer count is 

greater than 0, and hence for transit-utilized trips, the mean fare will be greater than $2.35 to 

account for the transfer cost. This relationship can be visualized by the histogram below (Figure 

9). 

 

 
Figure 9 – Histogram of trip counts by fare.  

Given that the “fare” for a walk-only trip is $0, it should not be interpreted as a “free” 

transit trip, but rather as a trip that is most efficiently serviced by walking, which has no fare 

cost. Moreover, this zero-dollar fare does not fully encapsulate all expenses for walk-only trips, 

as it excludes the cost of time, preferences, and needs. 

 

The replaceability of a trip is dependent upon a combination of factors. First, a trip’s 

replaceability is contingent on the person’s physical exertion capabilities. Under certain 

circumstances, the replaceability of the RH trip may be incomparable due to the rider’s physical 

capabilities. For example, an elderly, disabled person may need to traverse two blocks to get to 
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the grocery store. ArcGIS’ Route Analysis program will likely output that walking is most 

efficient, although given the user’s conditions, walking is not an option. Secondly, the 

replaceability is influenced by the user’s safety, which is dependent upon the perception of the 

route’s surrounding physical environment(s). For example, consider a walk-only trip that 

requires the person to walk along a busy road with limited pedestrian infrastructure or one that 

requires an individual to walk in inclement weather conditions. In these scenarios, the 

surrounding environment may have greater impact on mode-choice decisions, and likely will 

influence the user’s preference to favor personal safety. Moreover, when personal safety is of 

concern, people act conservatively to mitigate hazardous events from occurring. All of these 

conditions, concerns, and exceptions cannot be explicitly accounted for in our model. Therefore, 

when examining the proceeding results, these points should be taken into consideration. 

 

The following table (Table 6) presents a matrix of trip counts for walk-only trips by their 

transit-equivalent classification (2A = between-tract, 2B = within-tract), and replaceability 

group. From Table 2, out of the 7,949,902 trips, 806,254 are classified as walk-only. With 

219,903 trips lying in the buffer zone, the remaining 586,351 walk-only trips are depicted in 

Table 6. Assuming a normal distribution, this portion of trips in the buffer zone to the R and NR 

trip volume is expected. 

 
Table 6 – Walk-Only Trip Counts by Classification and Group 

Group Between-Tract Within-Tract Sum 

R 174,121 172,752 346,873 

NR 198,610 40,868 239,478 

Sum 213,620 372,731 586,351 

 

In comparison to the original RH trip, the alternative being a walk-only trip does not 

necessarily cost the person greater time. The selection of RH at a greater cost accounts for the 

advantages of and opportunities that come with RH. These opportunities are preferential, and 

may be exhibited by the RH trip, or exhibited by its alternatives and consequently avoided 

through RH. As stated in the literature review, examples include level of convenience, comfort, 

and cleanliness [9]. This extends to trips that utilize transit; we can assume the cost difference 

between an RH trip and its transit-equivalent trip represents the difference between the 

environmental conditions and individual’s preferences per alternative. This cost differential is 

further explored in the next subsection, Time Value Analysis. 

 

The replaceability of a trip has many implications, one of which regards the LOS and 

operations of a network: congestion. RH trips that have a transit-utilized solution have an 

alternative delay that is different from RH trips that replace walk-only trips. For transit utilized 

trips, there is an overall decrease in delay per person. Essentially, the demand shifts modes to 

transit and becomes pooled. The delay from the original RH trip is eliminated and delay is added 

from the transit services, but the delay per person is significantly lower for transit. These delays 

are inherent to the transit system, but vary in magnitude depending on type (bus, rail), service 

region (suburbs, city), and the hour and day. For bus services, an increase in passengers 

consequently results in increased delays from dwell times at access and egress points and vehicle 

entry and exit delays that are a result of demand. Buses will run with zero utility (no passengers), 

and hence there is a baseline level of congestion added to the network since every bus is one 



32 

 

more vehicle in the network. Although, as the utility increases (passenger volume increases), the 

magnitude of delay contributed by the bus increases. Moreover, this magnitude is a function of 

the existing LOS of its route. A bus at 50% capacity in the suburbs will incur less delay than that 

of the same bus in the city. For rail services, the contributing congestion is less sensitive to an 

increase in passengers.  Considering the systematic structure of rail services, vehicles enter 

stations and execute stops with or without demand. As opposed to buses, the vehicle entry and 

exit delay is inherently a part of the baseline level of congestion. However, rail delays are 

influenced by dwell times as an increase in passenger volumes warrants an increase in time for 

riders to enter and exit the rail car. Nonetheless, these confounding delays are expected from a 

growth of public transit ridership. However, it is assumed that an increase in public transit 

ridership implies a decrease in alternative mode demand, such as personal vehicles.  

 

In opposition to transit-utilized trips, the replacement of a walk-only trip implies the 

elimination of delay induced from RH, which is transferred to the pedestrian. Given the nature of 

pedestrians, they do not contribute high volumes of delay to transportation networks. First, 

pedestrians do not use the network like vehicles do. Other than pedestrian crosswalks, there is 

essentially no shared right of way. Secondly, pedestrians occupy significantly less ground area. 

Hence, an increase in pedestrian volumes does not imply the same delay as an increase in vehicle 

volumes. For example, the delay incurred by 10 RH trips (10 individual riders) is likely greater 

than that of 10 pedestrians. Thus, transfer of demand (replacement) of walk-only trips by RH 

services implies the addition of delay to the transportation network.  

 

These are important relationships that must be considered when analyzing the 

quantitative output and conclusions of this study.  

 

Time Value Analysis 
All observed trips were classified into one of four classes (Table 7). To classify a trip, the TTT 

and fare for the RH trip and its transit alternative were compared. For each class, there is a 

scenario distinguishing the relationship between the 𝑇𝑇𝑇𝑅𝐻 from 𝑇𝑇𝑇𝑇𝑟𝑎𝑛𝑠𝑖𝑡 and 𝑓𝑎𝑟𝑒𝑅𝐻 and 

𝑓𝑎𝑟𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡. For purposes of convenience, we have restated the criterion for all four classes (I-

IV) below. Following the class definitions is a summary table containing descriptive statistics per 

class (Table 7). 

 

I. These are trips where, in comparison to the RH trip, the transit-equivalent trip was 

less expensive, but slower. 

II. These are trips where, in comparison to the RH trip, the transit-equivalent trip was 

less expensive and faster.  

III. These are the trips where, in comparison to the RH trip, the transit trip was quicker, 

but more expensive.  

IV. These are the trips where, in comparison to the RH trip, the transit-equivalent trip was 

more expensive and slower. 
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Table 7 – Count, Mean, and Median per Cost-Travel Time Class 

 Class I Class II Class III Class IV 
Fare Transit < RH Transit < RH Transit > RH Transit > RH 

TTT Transit > RH Transit < RH Transit < RH Transit > RH 

Trip Count 7,174,581 39,374 732,833 3,114 

% Total 90.25% 0.5% 9.22% 0.03% 

 
𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.4519 0.5432 0.6179 0.6643 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)̃  0.4104 0.6152 0.6399 0.7216 

 

These results align with the existing conclusions that RH trips are perceived to be faster 

than the transit alternative. Class I and II trips exhibit this condition, yielding a conclusion that 

99.47% of RH trips are quicker than their transit alternative. This finding quantitatively supports 

the stated preference for RH (versus transit) because of the decrease in travel time. Of this 

percentage of trips, 90.25% (Class I) exhibited an RH trip fare greater than that of the transit 

alternative. With reference to the economic concept, opportunity cost, for Class I trips, riders’ 

chose to pay more (cost) for a quicker trip in return (opportunity). Although, given that mode-

choice decisions are multifaceted, in this scenario, the explicit cost difference only accounts for 

the difference in travel times. Moreover, there are likely implicit costs associated with each 

decision, so the relationship between these two variables may not be as clear. 

 

The confidence in the output from this time value analysis can be challenged by the 

nature of the datasets used. Recall that the O-D geographic coordinates are that of the 

corresponding census tracts that contain the origin or destination. This variance between the 

experimental and actual geographic location may impact the accuracy of the transit trip and its 

path. Consequently, the TTT and fare will have some error built in. 

 

Sensitivity Analysis 
Results from the parametric sensitivity analyses are extensive, so the results will be summarized 

and discussed. In addition to the figures provided in this section, there are more detailed 

supporting figures provided in the appendices. The supporting figures show the trend in 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) and population size for the R and NR groups separately, per sensitivity 

condition.  

 

For each trip, the variable of interest was adjusted and rerun through the program. All 

intermediate variables dependent upon the decision variable were also recalculated in the 

program. The new 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) was computed, and the trip was recategorized based on its 

magnitude. Thus, it is important to consider that for each percent-change condition, the sample 

for R and NR trip groups will vary in size. Considering 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) = [0 ∪ 1], a change in 

a group’s sample size indicates that the difference in trips has transferred to either the buffer 

zone or the opposing trip group (R/NR). Moreover, the means of both groups will fluctuate with 

the sensitivity condition. 

 

Results of T-Test 

For the seven aforementioned sensitivity parameters, t-tests were conducted per group and 

condition, and hence a total of 288 t-tests were executed. We fail to reject the null hypothesis for 
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17 scenarios (Variable, %∆, Group), all of which were exhibited by TC and AirPass values. The 

conditions of the rejected scenarios are listed below by variable, percent-change, and group. 

 

i. TC 

a. ± 5% (R)  

b. ± 10% (R)  

c. ± 5% (NR)  

ii. Airpass 

a. + 5% (R) 

b. - 5% to - 50% (R) 

 

From these results, we can conclude that for each scenario, an adjustment of the variable 

by the corresponding percent change will not yield a significant change in 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) for 

the stated group. The remaining 271 scenarios exhibited t-values greater than the critical value. 

This implies that with 5% error, we can assume the adjustment of each scenario’s corresponding 

parameters will have a statistically meaningful impact on the mean probability. A table of these 

values per condition and variable are in provided in Appendix C. 
 

Overview of Sensitivity Test Results 

In the following section, we introduce a plot that provides the means to compare between each 

variable’s influence on the probability of a person to select public transit (Figure 10). This figure 

displays the sum of all trip probabilities across groups R and NR. On the primary y-axis is the 

summation of probabilities in millions. The maximum value for one condition is the number of 

trips in groups R and NR multiplied by the maximum probability, 1. However, this value could 

only be obtained if every trip had a 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) = 1. On the x-axis is the sensitivity 

condition—the percent-difference of the variable from the observed value. There are 20 

sensitivity conditions, and 1 observed value (at 0% change); thus, for each sensitivity variable, 

there are 21 points plotted where each share the observed value. Hence, all connecting lines 

intersect at Sensitivity Condition = 0%.   

 

Secondly, we introduce stacked bar charts per sensitivity variable that depict the overall 

weighted mean P per sensitivity-condition, with the volumetric distribution of trips between 

groups R and NR (Figure 11–Figure 17). On the primary y-axis is the total weighted mean 

probability, which is a measure of the sum of groups R and NR contribution to the probability 

using the following equation: 

 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑃𝑅  
𝑛𝑅
𝑛𝑇
 + 𝑃𝑁𝑅  

𝑛𝑁𝑅
𝑛𝑇

  (10) 

 

The data labels (percentages) within each bar correspond to the percentage of total trips 

(nT) that each group contains. Per the legend, the blue portion of the stacked bar corresponds to 

the replaced trips, whereas the orange portion corresponds to the not replaced trips. It should be 

clarified that these percentages are independent from the portion heights of the stacked bars. In 

some scenarios, the height of the bar may be increasing as the percentage decreases.  When 

analyzing these figures, the subset of trips should be considered. For each condition, the total 

sample size only includes trips where 0 ≤  𝑃 ≤  0.45 or 0.55 ≤  𝑃 ≤  1, meaning that all trips 

in the buffer zone are excluded. To provide greater insight into the behavior within each trip 
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group, we provide two figures per variable in Appendix D; each combination graph compares the 

sample size and mean probability for the R and NR groups separately, by sensitivity condition. 

These figures are located in the appendices out of consideration for the report’s length, although 

these visuals are important to reference when analyzing the findings.  

 

 
Figure 10 – Sum of R and NR trip probabilities per sensitivity variable and condition. 

In Figure 10, the slopes illustrate 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)’s sensitivity to each variable. An 

increase in a slope’s steepness implies an increase in 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) sensitivity. Six variables 

(HHI, BF, TC, TTT, WT, AirPass) exhibit a negative relationship with 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴), 
whereas SiT exhibits a positive relationship with 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴). Each of these seven 

directionalities (positive or negative) were expected; however, the magnitude of each slope was 

unknown. It can be concluded that TTT has the greatest influence on 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴), whereas 

TC and AirPass have the least influence.  

 

For the number of transit stops in the pick-up/drop-off area (SiT), we predicted that an 

increase in transit stops would cause a positive shift in the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴)s for all trips. 

Inherently, a greater volume of transit stops implies greater service, increased frequencies, and 

decreased wait times. Hence, an increase in SiT would yield shorter TTT and WT, which in 

return, would increase the attractiveness of the transit alternative. 

 

While there are six variables that share the same negative directionality, only four of 

those significantly influence 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴). Positive changes in TTT, HHI, WT, and BF 

values all yield decreases in 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴), with the listed order corresponding to their level 

of influence. An adjustment in transfer costs (observed value of $0.25) and the airport pass prices 

(observed value of $5.00) yielded minimal change in 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴). Thus, we can conclude 

that altering these variables’ values will not significantly impact CTA ridership. This is further 

supported by summary of the t-test in Results of T-Test on page 33. 
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The weak sensitivity of 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) to the TC can be reasoned by the proportion of 

the TC to the total trip fare. Consider a transit trip with one transfer; the total trip fare would 

equal $2.60 (base fare of $2.35 + TC ($0.25). The TC is roughly 10% of the total trip fare, and 

thus any adjustment in the TC would yield negligible changes in the total trip fare. Moreover, the 

average number of transfers between both groups is less than 1 (Table 4). Hence, the average 

transit trip can be described by the aforementioned scenario. Figure 11, below, further supports 

this claim by displaying the volumetric distribution of trips and their weighted means per 

condition. The distribution and weighted means at the -50% and +50% sensitivity conditions are 

nearly identical to the values under the observed environment. Hence, an increase in TC would 

have little impact on ridership behaviors and levels. To increase revenue for transit agencies 

without disrupting existing behaviors, an increase in cost per transfer could be considered.  

 

 
Figure 11 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Transfer Cost (TC). 

 
Figure 12 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Base Fare. 
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The probability’s sensitivity under varying base fare conditions is more distinct than that 

of the TC (Figure 12). This difference can be attributed to the price: $2.35 as opposed to $0.25. 

Secondly, recall that for both groups, R and NR, the average number of transfers was 0.61 and 

0.93 respectively, meaning that overall, the average transit trip has approximately one transfer. A 

transit trip with one transfer equals the base fare ($2.35) plus the cost of one transfer ($0.25), 

totaled to $2.60, meaning the value of the base fare has greater weight. Thus, an equivalent 

percent-change in base fare, as opposed to TC, would impact 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) to a greater 

degree.  

 

Recall that the airport pass price is the cost of a one-way “ticket” to the airport via CTA. 

The adjustment of this pass price yields minimal deviation in 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) as shown by the 

flat slope in Figure 10. In Figure 13, the distribution of R and NR trips is shown per sensitivity 

condition. Of the trips to-or-from the airport, 42–43% are considered replaced, whereas 57–58% 

are considered not replaced. The deviation from the observed distribution is indicative of the 

small percentage of trips to or from the airport.   

 

In Chicago, CTA’s blue line, “L”, is a bus rapid transit (BRT) service between Chicago 

O’Hare International Airport and the Forest Park Terminal, located west of the downtown 

Chicago. Transit agencies often provide services to and from the airport that are more direct than 

other modes, such as RH or driving, which incur additional delay from entering and maneuvering 

airport grounds. Therefore, transit services exhibit great utility when arriving at or departing the 

airport; in comparison, transit takes passengers closer to the access point, mitigating lost time in 

queues. This is highly beneficial, especially since trips to the airport tend to be constrained by 

time (flight departures and arrivals). Even considering these factors challenging the utility of 

non-transit modes, the demand to-and-from the airport via RH is still considerable. It can be 

assumed that there exist balancing preferences towards RH to serve the remaining first or last 

mile of the trip. In other words, this arrangement connecting the last stop to home, or home to 

first stop is perceived to be so taxing in terms of time and/or workload that RH appeals to this 

disutility. Given that Forest Park Terminal is not centrally located downtown, nor does it provide 

viable service to north and south Chicago, taking transit to or from Chicago O’Hare is likely 

justified by the longer travel times, and number of transfers. This is a primed opportunity for 

CTA to expand its services to outlying regions, with competitive modes such as demand 

response transit (DRT), transit shuttles, or subsidized alternatives. This also serves as an 

opportunity for transit agencies to collaborate with RH companies to service the FLM via RH, 

and the main leg to the airport via CTA.  
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Figure 13 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Airport Pass Price (AirPass). 

Next are the variables associated with travel time: WT and TTT (Figures 14 and 15). For 

the negative sensitivity (from -50% to 0%) conditions, the TTT exhibits a slightly steeper slope 

than that of the WT. For the positive sensitivity (0% to 50%) conditions, the TTT and WT slope 

are nearly identical, as they overlap in the plot. The difference in slopes for the negative 

sensitivity conditions can be explained by TTT’s formula and the nesting of WT in its value. 

Recall that the TTT is the sum of the IVTT, wait time, and walk time. Meaning, a 50% decrease 

in TTT includes a 50% decrease in IVTT and wait time in addition to a decrease in walk time. A 

50% decrease in WT does not include the reduction in IVTT and walk time. When the new TTT 

is calculated, it uses the observed wait time and IVTT, but changes the WT. While these 

differences exist, they are relatively small in comparison to their distribution patterns and 

weighted probability values. This can be seen by the similarity in trip volumes and percentages 

between Figure 14 and Figure 15. Moreover, the overall weighted mean 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) and 

the two probabilities it is composed of, are almost identical for every sensitivity condition.  

 

 
Figure 14 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Total Travel Time (TTT). 
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Figure 15 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Walk Time (WT). 

The next variable, average household income (HHI), has less impact on 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) 
per Figure 16, although we must account for its static behavior and derivation. The utility model 

called for the input HHI to be rider specific. In existing literature, it was determined that 

ridehailers exhibit demographic characteristics that are at variance with the average American. 

Ridehailers were found to be more educated and of a higher income class. Therefore, the use of 

the average HHI may undervalue that of the average ridehailer and the accuracy of these results 

could be challenged. Nonetheless, the trend and behavior HHI has on 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) is 

transposable.   

 

 
Figure 16 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Average Household Income (HHI), 

The transit stops per census tract (SiT) was the only variable where the was a positive 

correlation between the 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) and the sensitivity condition. Similar to the other six 

variables, this positive relationship was predicted. The number of transit stops in a network has 

many implications for operations and ridership. An increase in transit stops implies an increase 
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in route LOS. As the distance between consecutive stops is decreased, the average access and 

egress distance decreases. Moreover, as the accessibility of transit services increases, the volume 

of serviceable patrons increases, and an increase in frequency is more likely, although there exist 

caveats with the more extreme positive sensitivity conditions. With reference to the source, these 

are likely not captured by the utility model. The addition of transit stops to an existing route must 

be optimized to account for the consequence: additional lost time. At every transit stop, delay is 

incurred in the operational timeline when approaching, operating at, and exiting the stop.  

 

The first delay is in the dwell time, which is the amount of time a transit vehicle waits at 

the stop. Embedded in the dwell time is boarding time, which is the time required for all 

approaching individuals to enter the vehicle and their ridership to be validated. Delay can 

quickly accumulate during peak period hours when there are large platoons of approaching riders 

and there is discontinuity in payment forms. This is another consequence of increased ridership.  

 

The second source is of delay is called the “re-entry” delay; this is the time required for 

the driver to merge into oncoming traffic. For every additional transit stop, one re-entry delay is 

incurred per cycle. The summation of these delays per stop and per cycle can adversely affect the 

travel time between stops, and the TTT of each rider. In summary, the addition of transit stops 

increases accessibility and consequently, utility. Designing for additional ridership must 

strategically consider the implications that additional riders have for the existing travel times and 

LOS attributes.  

 

 
Figure 17 – Weighted mean probability and trip distribution between groups per condition for sensitivity variable: 

Transit Stops per Census Tract. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

The role that RH services have played in the recent decline in public transit ridership has not been 

widely explored. The current body of research is constrained to empirical studies that vary in 

methodologies used and has relied on relatively small study samples. These studies analyze user 

preferences and experiences, but do not explicitly include trip records and their attributes. Thus, 

when aggregated, the conclusions yield a variety of results and implications, resulting in  

conclusions that cannot be widely agreed upon. 

 

Moreover, sample sizes in existing literature have been restricted by the framework of 

empirical methods. To our knowledge, there are no studies that explore the research question 

using a massive dataset containing individual trips. Further, our findings are derived from a 30-

day study period covering 4 full weeks. This allows behavioral results and trends to be 

represented with greater confidence.  

 

Lastly, our approach to exploring the research question is resourceful and novel. We 

define the replaceability of an RH trip by a series of spatial and mathematical analyses. First, the 

real-time transit equivalent trip was computed using the GTFS-integrated ArcGIS Route 

Analysis. Then, the probability of choosing transit over all other alternatives defined whether the 

transit-equivalent trip was a viable option and replaced by RH or if it was incomparable. If a trip 

was deemed the latter, the use of RH supplemented the unpractical transit services.  

 

Our findings indicate that 31% of RH trips were executed where the transit alternative 

exhibited a competitive utility with respect to travel times, fare/expenses, and workload. Over the 

month of June 2019, the total revenue lost from trips replaced by RH is estimated to be 

$6,114,4509. If we assume the percentage of replaced trips and trip counts for each month can be 

represented by June 2019, then the total loss in fare revenue over one year would be 

approximately 73 million dollars. Further, the ramifications of the demand transfer to RH 

services is not fully represented by the loss in revenue. As such, public transit agencies should 

employ strategies to increase transit utility such that a significant portion of this estimate can be 

recovered.   

 

As summarized in the introduction, the RH decision making process is highly complex, 

situational, and the output is variable. The utility model used in this report accounted for travel 

time, walking distance, fare, trip purpose, distribution of transit stops, transfer count and cost, 

and household income. While this model includes LOS attributes and household income, many 

situational factors were not considered. These unexplored factors serve as an opportunity to 

obtain a deeper understanding of the mode choice decision making process. One example would 

be to determine if a relationship exists between RH trip demand and inclement weather 

conditions. 

 

Next, further analyses of the replaced trip groups should be executed. Replaced trips have 

transit-equivalent trips that are comparable to the RH trip in terms of LOS attributes. However, 

the selection of RH can be attributed to personal preferences and perceptions towards RH that 

                                                           
9 Estimated by multiplying the average fare ($2.26) of the replaced trips by the number of replaceable trips. 
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outweigh the utility of transit. Future research should focus on studying mode-choice behavior to 

thoroughly understand the conditions in which a person selects RH instead of transit services. 

Regarding NR trips, transit agencies should turn inwards and evaluate services, or the lack 

thereof, in the corresponding origin and destination zones. 

 

Considering our research was limited to the city of Chicago, the continuation of this 

study in different cities and suburbs will yield more representative conclusions. Moreover, it will 

allow for the identification of behavioral trends and geo-specific characteristics that influence 

RH ridership. 

 

Given the scope of this project, we were unable to further explore the behavior of pooled 

trips. The dataset used provides indicators of a pooled trip and the number of passengers pooled 

in one trip. Future research should focus on modeling pooled trips, and their differentiation from 

single-occupancy RH trips. Inherently, pooled riders exhibit the willingness to compensate travel 

time, privacy, and walking time for a reduced travel cost. In most circumstances, when selecting 

transit over RH, riders are willing to have a greater travel time for a smaller fare. This 

opportunity cost perspective parallels with ridehailers selecting pooled RH trips over single 

occupancy trips. Given the similarities, the selection of pooled RH over transit and pooled riders, 

should be investigated.  

 

Publicly available RH trip data will likely maintain its anonymity by recording origins 

and destinations as their census tract centroids. Given it is unlikely for the precision to increase, 

studies that are macroscopic and encompass all attributes types (temporal, spatial, monetary) 

should be executed. However, the use of our methodologies and approach is only possible for 

regions that mandate the submission of all RH trips. Like the City of Chicago, government 

agencies across the US should require TNCs to report all RH trips with trip attributes that include 

spatial and temporal parameters of the origin and destination. Recording and releasing this data 

will enable institutions to publish research that will provide a greater understanding of how RH 

impacts the transportation network and economy.  

 

  



43 

 

REFERENCES 

[1] "The history of Uber." Uber. https://www.uber.com/newsroom/history/ (accessed June 6, 

2020. 

[2] A. Greiner, M. McFarland, I. Sherman, and J. Tse. "A History of Lyft, From Fuzzy Pink 

Mustaches to Global Ride Share Giant." CNN. 

https://www.cnn.com/interactive/2019/03/business/lyft-history/index.html (accessed June 

11, 2020, 2020). 

[3] S. Melendez, "How Uber Conquered the World in 2013,"  vol. 2020, ed: Fast Company, 

2014. 

[4] J. Jiang, "More Americans are using RH apps," in FactTank vol. 2020, ed. Online: Pew 

Research Center, 2019. 

[5] "Ride-hailing Phenomenon Under Hood." HEREmonility. 

https://mobility.here.com/learn/smart-mobility/RH-phenomenon-under-hood (accessed 

2020). 

[6] L. Rayle, D. Dai, N. Chan, R. Cervero, and S. Shaheen, "Just a better taxi? A survey-

based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport 

Policy, vol. 45, pp. 168-178, 2016, doi: 10.1016/j.tranpol.2015.10.004. 

[7] APTA Ridership by Mode and Quarter 1990-Present.  

[8] "Population by Age," 2008-2018 ed. Online: Kaiser Family Foundation, 2018. 

[9] S. D. Contreras and A. Paz, "The effects of RH companies on the taxicab industry in Las 

Vegas, Nevada," Transportation Research Part A: Policy and Practice, vol. 115, pp. 63-

70, 2018, doi: 10.1016/j.tra.2017.11.008. 

[10] J. Lo and S. Morseman, "The Perfect uberPOOL: A Case Study on Trade-Offs," 

Ethnographic Praxis in Industry Conference Proceedings, vol. 2018, no. 1, pp. 195-223, 

2018, doi: 10.1111/1559-8918.2018.01204. 

[11] S. Y. Amirkiaee and N. Evangelopoulos, "Why do people rideshare? An experimental 

study," Transportation Research Part F: Traffic Psychology and Behaviour, vol. 55, pp. 

9-24, 2018, doi: 10.1016/j.trf.2018.02.025. 

[12] R. R. Clewlow and G. S. Mishra, "Disruptive Transportation: The Adoption, Utilization, 

and Impacts of Ride-Hailing in the United States," UC Davis Institute for Transportation 

Studies, Research Report 2017. [Online]. Available: 

http://www.reginaclewlow.com/pubs/2017_UCD-ITS-RR-17-07.pdf 

[13] M. Javanmardi, M. F. Langerudi, R. S. Anbarani, and A. K. Mohammadian, "Mode 

Choice Modeling Using Personalized Travel Time and Cost Data," University of South 

Florida, Tampa, Flordia, 2117-9060-02-C, May 2015 2015.  

[14] A. Henao and W. E. Marshall, "The impact of RH on vehicle miles traveled," 

Transportation, 2018, doi: 10.1007/s11116-018-9923-2. 

[15] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, "Enhancing urban mobility: 

Integrating ride-sharing and public transit," Computers & Operations Research, vol. 90, 

pp. 12-21, 2018, doi: 10.1016/j.cor.2017.08.016. 

[16] M. Graehler, R. Mucci, and G. Erhardt, "Understanding the Recent Transit Ridership 

Decline in Major US Cities: Service Cuts or Emerging Modes?," presented at the TRB 

2019 Annual Meeting, Washington, D.C., 2018. 

https://www.uber.com/newsroom/history/
https://www.cnn.com/interactive/2019/03/business/lyft-history/index.html
https://mobility.here.com/learn/smart-mobility/ride-hailing-phenomenon-under-hood
http://www.reginaclewlow.com/pubs/2017_UCD-ITS-RR-17-07.pdf


44 

 

[17] N. Sadowsky and E. Nelson, "The Impact of Ride-Hailing Services on Public 

Transportation Use: A Discontinuity Regression Analysis," Bowdoin College, Working 

Paper, May 26, 2017, 2017. 

[18] C. Murphy, "Shared Mobility and the Transformation of Public Transit," Shared-Use 

Mobility Center (SUMC), Research Analysis TCRP Project J-11, Task 21, 2016.  

[19] Transportation Network Providers - Trips, City of Chicago.  

[20] QuickFacts Chicago city, Illinois, United States Census Bureau.  

[21] N.A. "DATA USA: Chicago, IL." Deloitte. https://datausa.io/profile/geo/chicago-il 

(accessed May 25, 2020, 2020). 

[22] M. Hughes-Cromwick, "2018 Public Transportation Fact Book," American Public 

Transportation Association, December 2018 2018.  

[23] "Facts at a glance." Chicago Transit Authority (CTA). (accessed May 25, 2020, 2020). 

[24] "Transportation Network Providers (Ride-Hail)." City of Chicago. 

https://www.chicago.gov/city/en/depts/bacp/supp_info/transportation-network-

providers.html (accessed June 11, 2020, 2020). 

[25] CTA GTFS, OpenMobilityData, May 16, 2019 - July 31, 2019.  

[26] Street Center Lines, City of Chicago.  

[27] Boundaries - Census Tracts - 2010, City of Chicago.  

[28] D. Nabors, R. Schneider, D. Leven, K. Lieberman, and C. Mitchell, "Pedestrian Safety 

Guide for Transit Agencies," FHWA, Online, February 2008 2008.  

 

  

https://datausa.io/profile/geo/chicago-il
https://www.chicago.gov/city/en/depts/bacp/supp_info/transportation-network-providers.html
https://www.chicago.gov/city/en/depts/bacp/supp_info/transportation-network-providers.html


45 

 

APPENDICES 

Appendix A: TNC Dataset Description 

 

This is the source dataset that contained all RH trips within Chicago from June 1–June 30, 2019. 

The city’s ordinances require that all trips to be descriptively reported. For each RH trio, the 

following data elements were recorded and are accessible in this dataset. The bolded items were 

used in our study. 

1. Trip ID 

2. Trip Start Timestamp 

3. Trip End Timestamp 

4. Trip Seconds 

5. Trip Miles 

6. Pickup Census Tract 

7. Dropoff Census Tract 

8. Pickup Community Area 

9. Dropoff Community Area 

10. Fare 

11. Tip 

12. Additional Charges 

13. Trip Total 

14. Shared Trip Authorized 

15. Trips Pooled 

16. Pickup Centroid Latitude 

17. Pickup Centroid Longitude 

18. Pickup Centroid Location 

19. Dropoff Centroid Latitude 

20. Dropoff Centroid Longitude 

21. Dropoff Centroid Location 
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Appendix B: ArcGIS Transit Network Map with GTFS Components 
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Appendix C: T-Test Results for Sensitivity Analysis 

 

C.. Transit Stops per Census Tract (SiT) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

SiT R 5 0.6853 2495025 0.0061 0.0804 21.232 Yes

SiT NR 5 0.2222 4809856 0.0161 0.1264 20.706 Yes

SiT R 10 0.6868 2525322 0.0062 0.0772 44.065 Yes

SiT NR 10 0.2239 4779661 0.0163 0.1264 41.197 Yes

SiT R 15 0.6883 2558169 0.0062 0.0774 65.628 Yes

SiT NR 15 0.2250 4735662 0.0165 0.1268 55.374 Yes

SiT R 20 0.6896 2586860 0.0063 0.0777 83.617 Yes

SiT NR 20 0.2262 4706984 0.0166 0.1270 69.189 Yes

SiT R 25 0.6912 2618863 0.0064 0.0780 107.414 Yes

SiT NR 25 0.2281 4670298 0.0169 0.1274 92.251 Yes

SiT R 30 0.6926 2642486 0.0064 0.0782 126.769 Yes

SiT NR 30 0.2291 4637077 0.0170 0.1278 104.046 Yes

SiT R 35 0.6938 2668359 0.0065 0.0784 145.108 Yes

SiT NR 35 0.2305 4606489 0.0172 0.1281 119.437 Yes

SiT R 40 0.6951 2696837 0.0065 0.0786 163.663 Yes

SiT NR 40 0.2317 4569306 0.0174 0.1285 133.102 Yes

SiT R 45 0.6963 2725702 0.0066 0.0788 180.931 Yes

SiT NR 45 0.2329 4532542 0.0176 0.1288 147.420 Yes

SiT R 50 0.6975 2759675 0.0067 0.0789 199.042 Yes

SiT NR 50 0.2343 4492632 0.0178 0.1292 163.327 Yes

SiT R -5 0.6823 2438043 0.0059 0.0820 20.347 Yes

SiT NR -5 0.2195 4873169 0.0158 0.1267 12.916 Yes

SiT R -10 0.6806 2405911 0.0059 0.0772 44.856 Yes

SiT NR -10 0.2176 4902156 0.0156 0.1253 36.351 Yes

SiT R -15 0.6788 2373237 0.0058 0.0770 70.783 Yes

SiT NR -15 0.2158 4935580 0.0154 0.1249 58.272 Yes

SiT R -20 0.6774 2336696 0.0056 0.0767 91.535 Yes

SiT NR -20 0.2145 4970717 0.0152 0.1245 75.396 Yes

SiT R -25 0.6758 2308129 0.0056 0.0762 114.161 Yes

SiT NR -25 0.2131 4998027 0.0151 0.1242 93.668 Yes

SiT R -30 0.6742 2264330 0.0054 0.0761 137.116 Yes

SiT NR -30 0.2108 5030303 0.0148 0.1239 122.950 Yes

SiT R -35 0.6724 2231023 0.0053 0.0755 163.332 Yes

SiT NR -35 0.2089 5059346 0.0146 0.1234 147.634 Yes

SiT R -40 0.6703 2198227 0.0052 0.0752 193.005 Yes

SiT NR -40 0.2068 5085604 0.0144 0.1230 175.403 Yes

SiT R -45 0.6683 2167613 0.0051 0.0748 221.981 Yes

SiT NR -45 0.2050 5113631 0.0142 0.1225 198.951 Yes

SiT R -50 0.6665 2143729 0.0049 0.0744 248.691 Yes

SiT NR -50 0.2037 5137202 0.0141 0.1222 217.399 Yes
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C.2. Household Income (HHI) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

HHI R 5 0.6808 2408085 0.0059 0.0776 42.680 Yes

HHI NR 5 0.2179 4886602 0.0157 0.1254 32.058 Yes

HHI R 10 0.6781 2345069 0.0058 0.0774 80.714 Yes

HHI NR 10 0.2151 4929292 0.0155 0.1252 67.958 Yes

HHI R 15 0.6754 2283041 0.0057 0.0770 119.126 Yes

HHI NR 15 0.2124 4975941 0.0154 0.1247 101.731 Yes

HHI R 20 0.6727 2220503 0.0056 0.0766 156.470 Yes

HHI NR 20 0.2100 5028041 0.0153 0.1244 132.453 Yes

HHI R 25 0.6704 2152209 0.0054 0.0763 188.184 Yes

HHI NR 25 0.2074 5074954 0.0152 0.1242 166.246 Yes

HHI R 30 0.6680 2085683 0.0053 0.0759 220.380 Yes

HHI NR 30 0.2048 5122517 0.0151 0.1240 199.882 Yes

HHI R 35 0.6657 2019579 0.0052 0.0756 251.423 Yes

HHI NR 35 0.2024 5173659 0.0150 0.1237 231.483 Yes

HHI R 40 0.6635 1953736 0.0051 0.0753 281.228 Yes

HHI NR 40 0.2001 5227001 0.0149 0.1236 261.790 Yes

HHI R 45 0.6614 1887490 0.0050 0.0750 308.813 Yes

HHI NR 45 0.1979 5283259 0.0149 0.1234 290.387 Yes

HHI R 50 0.6593 1822124 0.0049 0.0747 335.484 Yes

HHI NR 50 0.1959 5342197 0.0149 0.1234 317.428 Yes

HHI R -5 0.6868 2522353.00000 0.0061 0.0684 49.192 Yes

HHI NR -5 0.2236 4799066.00000 0.0162 0.1272 37.716 Yes

HHI R -10 0.6899 2577295.00000 0.0062 0.0772 88.897 Yes

HHI NR -10 0.2263 4752580.00000 0.0164 0.1266 71.286 Yes

HHI R -15 0.6932 2628223.00000 0.0064 0.0776 136.475 Yes

HHI NR -15 0.2290 4705527.00000 0.0166 0.1270 103.919 Yes

HHI R -20 0.6963 2680427.00000 0.0065 0.0780 182.537 Yes

HHI NR -20 0.2319 4660504.00000 0.0169 0.1274 137.490 Yes

HHI R -25 0.6997 2728886.00000 0.0066 0.0784 230.420 Yes

HHI NR -25 0.2349 4618853.00000 0.0172 0.1279 172.699 Yes

HHI R -30 0.7030 2776000.00000 0.0067 0.0789 278.446 Yes

HHI NR -30 0.2378 4576431.00000 0.0175 0.1285 207.047 Yes

HHI R -35 0.7066 2816994.00000 0.0068 0.0793 329.813 Yes

HHI NR -35 0.2408 4532805.00000 0.0179 0.1291 240.361 Yes

HHI R -40 0.7103 2855191.00000 0.0069 0.0797 382.425 Yes

HHI NR -40 0.2433 4480779.00000 0.0182 0.1298 268.396 Yes

HHI R -45 0.7138 2894857.00000 0.0070 0.0801 432.773 Yes

HHI NR -45 0.2457 4425159.00000 0.0185 0.1304 294.145 Yes

HHI R -50 0.7171 2936793.00000 0.0072 0.0805 479.626 Yes

HHI NR -50 0.2478 4363087.00000 0.0188 0.1310 315.636 Yes
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C.3. Base Fare (BF) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

BF R 5 0.6824 2443011 0.0060 0.0776 19.103 Yes

BF NR 5 0.2193 4854155 0.0158 0.1254 14.372 Yes

BF R 10 0.6811 2419966 0.0059 0.0772 37.976 Yes

BF NR 10 0.2182 4871577 0.0158 0.1255 28.223 Yes

BF R 15 0.6798 2396195 0.0059 0.0771 56.346 Yes

BF NR 15 0.2171 4888079 0.0157 0.1254 42.667 Yes

BF R 20 0.6785 2372581 0.0058 0.0769 74.964 Yes

BF NR 20 0.2160 4905349 0.0156 0.1252 56.689 Yes

BF R 25 0.6773 2347405 0.0058 0.0768 92.419 Yes

BF NR 25 0.2148 4921357 0.0155 0.1251 71.463 Yes

BF R 30 0.6760 2322877 0.0057 0.0766 110.511 Yes

BF NR 30 0.2137 4939065 0.0155 0.1249 85.259 Yes

BF R 35 0.6748 2297106 0.0057 0.0765 127.645 Yes

BF NR 35 0.2126 4956561 0.0154 0.1248 99.162 Yes

BF R 40 0.6736 2271684 0.0056 0.0763 145.149 Yes

BF NR 40 0.2115 4974259 0.0154 0.1247 112.960 Yes

BF R 45 0.6723 2247343 0.0056 0.0762 163.581 Yes

BF NR 45 0.2104 4992291 0.0153 0.1246 126.567 Yes

BF R 50 0.6711 2221355 0.0055 0.0760 180.671 Yes

BF NR 50 0.2094 5010727 0.0153 0.1245 139.931 Yes

BF R -5 0.6851 2487428 0.0061 0.0736 20.521 Yes

BF NR -5 0.2217 4821075 0.0160 0.1258 14.358 Yes

BF R -10 0.6865 2509844 0.0061 0.0772 38.697 Yes

BF NR -10 0.2228 4803942 0.0161 0.1260 28.293 Yes

BF R -15 0.6878 2532383 0.0062 0.0773 57.560 Yes

BF NR -15 0.2240 4788141 0.0161 0.1262 42.978 Yes

BF R -20 0.6891 2554739 0.0062 0.0775 76.431 Yes

BF NR -20 0.2252 4771586 0.0162 0.1263 57.166 Yes

BF R -25 0.6904 2576762 0.0063 0.0777 95.425 Yes

BF NR -25 0.2264 4755773 0.0163 0.1265 71.744 Yes

BF R -30 0.6917 2599248 0.0063 0.0778 113.930 Yes

BF NR -30 0.2275 4738851 0.0164 0.1267 85.611 Yes

BF R -35 0.6930 2619848 0.0063 0.0780 133.699 Yes

BF NR -35 0.2287 4722688 0.0165 0.1268 99.875 Yes

BF R -40 0.6944 2641085 0.0064 0.0782 152.894 Yes

BF NR -40 0.2297 4703201 0.0166 0.1270 112.130 Yes

BF R -45 0.6956 2663710 0.0065 0.0783 170.858 Yes

BF NR -45 0.2308 4685046 0.0167 0.1272 125.136 Yes

BF R -50 0.6968 2686780 0.0065 0.0785 188.265 Yes

BF NR -50 0.2319 4667249 0.0167 0.1273 138.255 Yes
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C.4. Transfer Cost (TC) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

TC R 5 0.6837 2462878 0.0060 0.0774 0.543 No

TC NR 5 0.2204 4839298 0.0159 0.1253 1.054 No

TC R 10 0.6837 2460108 0.0060 0.0772 0.970 No

TC NR 10 0.2203 4841171 0.0159 0.1258 2.004 Yes

TC R 15 0.6837 2457473 0.0060 0.0772 1.495 Yes

TC NR 15 0.2203 4843135 0.0159 0.1258 2.905 Yes

TC R 20 0.6836 2454963 0.0060 0.0772 2.114 Yes

TC NR 20 0.2202 4845277 0.0159 0.1258 3.703 Yes

TC R 25 0.6836 2452335 0.0060 0.0773 2.635 Yes

TC NR 25 0.2201 4847099 0.0159 0.1258 4.690 Yes

TC R 30 0.6836 2449618 0.0060 0.0773 3.081 Yes

TC NR 30 0.2200 4848936 0.0159 0.1258 5.668 Yes

TC R 35 0.6835 2446649 0.0060 0.0773 3.324 Yes

TC NR 35 0.2200 4850828 0.0159 0.1258 6.615 Yes

TC R 40 0.6835 2443904 0.0060 0.0773 3.736 Yes

TC NR 40 0.2199 4853057 0.0159 0.1258 7.366 Yes

TC R 45 0.6835 2441385 0.0060 0.0773 4.320 Yes

TC NR 45 0.2198 4855062 0.0160 0.1258 8.248 Yes

TC R 50 0.6835 2438066 0.0060 0.0773 4.268 Yes

TC NR 50 0.2198 4856992 0.0160 0.1259 9.176 Yes

TC R -5 0.6838 2468088 0.0060 0.0770 0.583 No

TC NR -5 0.2206 4835583 0.0159 0.1260 0.872 No

TC R -10 0.6839 2470599 0.0060 0.0772 1.226 No

TC NR -10 0.2207 4833767 0.0159 0.1258 1.858 Yes

TC R -15 0.6839 2473642 0.0060 0.0772 1.461 Yes

TC NR -15 0.2207 4832003 0.0159 0.1257 2.873 Yes

TC R -20 0.6839 2476350 0.0060 0.0772 1.964 Yes

TC NR -20 0.2208 4830291 0.0159 0.1257 3.918 Yes

TC R -25 0.6839 2479164 0.0060 0.0772 2.390 Yes

TC NR -25 0.2209 4828349 0.0159 0.1257 4.826 Yes

TC R -30 0.6840 2481692 0.0060 0.0772 3.044 Yes

TC NR -30 0.2210 4826483 0.0159 0.1257 5.779 Yes

TC R -35 0.6840 2484472 0.0060 0.0771 3.507 Yes

TC NR -35 0.2211 4824794 0.0159 0.1257 6.835 Yes

TC R -40 0.6841 2487194 0.0060 0.0771 4.021 Yes

TC NR -40 0.2211 4822843 0.0158 0.1257 7.736 Yes

TC R -45 0.6841 2490188 0.0060 0.0771 4.330 Yes

TC NR -45 0.2212 4821064 0.0158 0.1257 8.738 Yes

TC R -50 0.6841 2492930 0.0060 0.0771 4.840 Yes

TC NR -50 0.2213 4819360 0.0158 0.1257 9.783 Yes
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C.5. Airport Pass Price (Airpass) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

Airpass R 5 0.6838 2462635 0.0060 0.0832 0.529 No

Airpass NR 5 0.2203 4840440 0.0159 0.1197 2.885 Yes

Airpass R 10 0.6840 2457211 0.0060 0.0773 3.305 Yes

Airpass NR 10 0.2201 4843881 0.0159 0.1257 5.152 Yes

Airpass R 15 0.6840 2455356 0.0060 0.0772 3.385 Yes

Airpass NR 15 0.2199 4847229 0.0159 0.1257 7.624 Yes

Airpass R 20 0.6841 2452422 0.0060 0.0772 4.374 Yes

Airpass NR 20 0.2197 4850314 0.0159 0.1257 10.254 Yes

Airpass R 25 0.6841 2450841 0.0060 0.0772 4.409 Yes

Airpass NR 25 0.2195 4853522 0.0159 0.1257 12.817 Yes

Airpass R 30 0.6841 2449203 0.0060 0.0772 4.557 Yes

Airpass NR 30 0.2193 4856732 0.0159 0.1257 15.380 Yes

Airpass R 35 0.6841 2447734 0.0060 0.0772 4.619 Yes

Airpass NR 35 0.2191 4861133 0.0159 0.1257 17.265 Yes

Airpass R 40 0.6842 2445550 0.0060 0.0772 5.314 Yes

Airpass NR 40 0.2189 4863855 0.0159 0.1258 20.137 Yes

Airpass R 45 0.6842 2443079 0.0060 0.0772 6.311 Yes

Airpass NR 45 0.2186 4866652 0.0159 0.1258 22.959 Yes

Airpass R 50 0.6843 2441081 0.0060 0.0772 7.044 Yes

Airpass NR 50 0.2184 4868870 0.0159 0.1258 26.105 Yes

Airpass R -5 0.6837 2468804 0.0060 0.0770 0.782 No

Airpass NR -5 0.2207 4834097 0.0159 0.1261 2.351 Yes

Airpass R -10 0.6837 2471243 0.0060 0.0772 0.786 No

Airpass NR -10 0.2209 4830867 0.0159 0.1258 4.849 Yes

Airpass R -15 0.6837 2474040 0.0060 0.0772 0.979 No

Airpass NR -15 0.2211 4826979 0.0159 0.1258 6.943 Yes

Airpass R -20 0.6838 2475912 0.0060 0.0772 0.385 No

Airpass NR -20 0.2211 4820255 0.0159 0.1258 7.311 Yes

Airpass R -25 0.6838 2477990 0.0060 0.0771 0.113 No

Airpass NR -25 0.2213 4816551 0.0159 0.1257 9.407 Yes

Airpass R -30 0.6838 2481005 0.0060 0.0771 0.047 No

Airpass NR -30 0.2214 4811558 0.0159 0.1258 10.708 Yes

Airpass R -35 0.6838 2484339 0.0060 0.0771 0.357 No

Airpass NR -35 0.2215 4806175 0.0159 0.1257 11.721 Yes

Airpass R -40 0.6837 2487690 0.0060 0.0771 0.561 No

Airpass NR -40 0.2215 4800445 0.0158 0.1257 12.470 Yes

Airpass R -45 0.6838 2490328 0.0060 0.0771 0.112 No

Airpass NR -45 0.2216 4795339 0.0158 0.1257 13.514 Yes

Airpass R -50 0.6838 2494030 0.0060 0.0771 0.387 No

Airpass NR -50 0.2217 4789826 0.0158 0.1257 14.260 Yes
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C.6. Total Travel Time (TTT) 

 

  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

TTT R 5 0.6804 2364525 0.0059 0.0861 42.548 Yes

TTT NR 5 0.2151 4921913 0.0159 0.1273 65.870 Yes

TTT R 10 0.6772 2265643 0.0059 0.0777 91.732 Yes

TTT NR 10 0.2099 5001648 0.0159 0.1253 133.044 Yes

TTT R 15 0.6745 2162121 0.0058 0.0776 128.975 Yes

TTT NR 15 0.2050 5088479 0.0160 0.1253 194.990 Yes

TTT R 20 0.6712 2049177 0.0056 0.0774 171.333 Yes

TTT NR 20 0.1996 5191848 0.0161 0.1253 263.687 Yes

TTT R 25 0.6687 1951227 0.0056 0.0769 204.680 Yes

TTT NR 25 0.1954 5278065 0.0162 0.1257 316.657 Yes

TTT R 30 0.6665 1852785 0.0055 0.0767 231.717 Yes

TTT NR 30 0.1915 5364485 0.0162 0.1258 367.701 Yes

TTT R 35 0.6643 1759145 0.0054 0.0765 258.261 Yes

TTT NR 35 0.1878 5452893 0.0163 0.1259 416.146 Yes

TTT R 40 0.6624 1665139 0.0053 0.0763 278.874 Yes

TTT NR 40 0.1842 5542000 0.0164 0.1261 463.279 Yes

TTT R 45 0.6604 1575359 0.0052 0.0761 301.164 Yes

TTT NR 45 0.1804 5630910 0.0164 0.1262 512.839 Yes

TTT R 50 0.6586 1482437 0.0051 0.0760 318.617 Yes

TTT NR 50 0.1763 5724512 0.0165 0.1263 566.080 Yes

TTT R -5 0.6875 2573128 0.0061 0.0661 62.470 Yes

TTT NR -5 0.2275 4753748 0.0158 0.1333 81.408 Yes

TTT R -10 0.6912 2672780 0.0062 0.0768 108.865 Yes

TTT NR -10 0.2337 4670034 0.0158 0.1261 161.045 Yes

TTT R -15 0.6952 2772131 0.0063 0.0771 168.623 Yes

TTT NR -15 0.2404 4585664 0.0156 0.1260 242.313 Yes

TTT R -20 0.6992 2857939 0.0063 0.0775 228.794 Yes

TTT NR -20 0.2458 4502970 0.0156 0.1258 307.213 Yes

TTT R -25 0.7034 2943271 0.0064 0.0778 292.331 Yes

TTT NR -25 0.2524 4423434 0.0155 0.1257 385.541 Yes

TTT R -30 0.7077 3033133 0.0065 0.0780 357.355 Yes

TTT NR -30 0.2594 4331803 0.0153 0.1256 468.471 Yes

TTT R -35 0.7119 3123318 0.0066 0.0783 421.456 Yes

TTT NR -35 0.2666 4239614 0.0150 0.1252 553.227 Yes

TTT R -40 0.7162 3199891 0.0067 0.0788 485.792 Yes

TTT NR -40 0.2726 4148712 0.0148 0.1247 624.465 Yes

TTT R -45 0.7209 3267041 0.0067 0.0792 555.579 Yes

TTT NR -45 0.2787 4057333 0.0147 0.1244 695.136 Yes

TTT R -50 0.7254 3331646 0.0068 0.0794 623.560 Yes

TTT NR -50 0.2843 3974717 0.0146 0.1240 759.213 Yes
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C.7. Walk Time (WT) 

 

 
  

Variable Group Condition Sample Mean P Sample Size Variance Standard Error t Reject Null?

- R/NR %∆ - Trips - - - Yes/No

Observed R 0 0.6838 2465504 0.0060 - - -

Observed NR 0 0.2205 4837540 0.0159 - - -

WT R 5 0.6817 2414906 0.0060 0.0875 25.771 Yes

WT NR 5 0.2173 4882494 0.0160 0.1175 41.819 Yes

WT R 10 0.6801 2359991 0.0059 0.0775 52.680 Yes

WT NR 10 0.2143 4923712 0.0160 0.1256 77.292 Yes

WT R 15 0.6781 2312289 0.0059 0.0772 80.843 Yes

WT NR 15 0.2113 4966393 0.0160 0.1257 115.004 Yes

WT R 20 0.6760 2246414 0.0058 0.0773 109.698 Yes

WT NR 20 0.2075 5021655 0.0161 0.1256 162.845 Yes

WT R 25 0.6744 2194689 0.0057 0.0769 131.927 Yes

WT NR 25 0.2051 5063841 0.0161 0.1259 192.846 Yes

WT R 30 0.6729 2142018 0.0057 0.0767 151.339 Yes

WT NR 30 0.2029 5107312 0.0162 0.1260 220.471 Yes

WT R 35 0.6715 2089980 0.0056 0.0766 170.147 Yes

WT NR 35 0.2007 5150211 0.0162 0.1260 247.570 Yes

WT R 40 0.6702 2038566 0.0056 0.0765 188.053 Yes

WT NR 40 0.1987 5194013 0.0162 0.1261 274.148 Yes

WT R 45 0.6689 1983881 0.0055 0.0764 204.243 Yes

WT NR 45 0.1963 5237490 0.0162 0.1261 304.356 Yes

WT R 50 0.6674 1930468 0.0055 0.0762 224.095 Yes

WT NR 50 0.1935 5285123 0.0163 0.1261 340.064 Yes

WT R -5 0.6859 2525332 0.0061 0.0709 34.084 Yes

WT NR -5 0.2250 4788457 0.0157 0.1297 53.716 Yes

WT R -10 0.6880 2579411 0.0061 0.0770 60.916 Yes

WT NR -10 0.2287 4742580 0.0157 0.1258 101.374 Yes

WT R -15 0.6902 2635158 0.0062 0.0772 93.217 Yes

WT NR -15 0.2331 4698168 0.0155 0.1256 154.583 Yes

WT R -20 0.6922 2680209 0.0063 0.0775 123.670 Yes

WT NR -20 0.2362 4658046 0.0155 0.1253 193.251 Yes

WT R -25 0.6944 2726679 0.0063 0.0777 155.961 Yes

WT NR -25 0.2403 4617247 0.0154 0.1252 243.145 Yes

WT R -30 0.6967 2779116 0.0064 0.0778 189.169 Yes

WT NR -30 0.2446 4559922 0.0151 0.1251 294.911 Yes

WT R -35 0.6990 2828944 0.0064 0.0780 224.551 Yes

WT NR -35 0.2491 4506906 0.0148 0.1245 351.382 Yes

WT R -40 0.7013 2870907 0.0065 0.0783 257.717 Yes

WT NR -40 0.2530 4461531 0.0146 0.1240 398.853 Yes

WT R -45 0.7035 2912681 0.0065 0.0785 290.345 Yes

WT NR -45 0.2568 4415482 0.0144 0.1236 446.608 Yes

WT R -50 0.7055 2953952 0.0066 0.0787 320.012 Yes

WT NR -50 0.2600 4372348 0.0143 0.1232 486.327 Yes
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Appendix D: Supplemental Figures 

 

The following figures are pairs of graphs displaying the probability as points with a trend line, 

and the sample size (trips) of the respective group as bar elements. The first figure plots the 

results for the replaced trip group, and the second figure plots the results for the not-replaced trip 

group. The 𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) values reference the secondary axis, to the right of the graph. 

Similarly, the sample size values correspond to the primary axis, located to the left of the graph. 

Per figure, there are a total of 21 scenarios plotted, with one being the observed scenario. The 

𝑃(𝑇𝑟𝑎𝑛𝑠𝑖𝑡|𝐶𝑇𝐴) and sample size are plotted in grey and correspond to the x-axis value of 0.  

 

For formatting purposes, the figures begin on the next page.  
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D.1. Transit Stops per Census Tract (SiT) 

 

 
Figure D1 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Transit Stops per Census Tract. 

 

D.2. Household Income (HHI) 

 

 
Figure D2 – Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Transit Stops per Census Tract. 

 



56 

 

 
Figure D3 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Household Income 

 

 
Figure D4 – Mean probability of selecting CTA and sample size per sensitivity condition for  

not-replaced trips, for sensitivity variable: Household Income. 
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D.3.Total Travel Time (TTT) 

 

 
Figure D5 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Total Travel Time. 

 

 
Figure D6 – Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Total Travel Time. 
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D.4. Walk Time (WT) 

 
Figure D7 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Walk Time 

 

 
Figure D8 – Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Walk Time 
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D.5. Base Fare 

 

 
Figure D9 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Base Fare 

 

 
Figure D10 – Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Base Fare. 
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D.6. Transfer Cost  

 

 
Figure D11 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Transfer Cost 

 

 
Figure D12– Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Transfer Cost 
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D.7. Airport Pass Price 

 

 
Figure D13 – Mean probability of selecting CTA and sample size per sensitivity condition for replaced trips, for 

sensitivity variable: Airport Pass Price. 

 

 
Figure D14 – Mean probability of selecting CTA and sample size per sensitivity condition for not-replaced trips, for 

sensitivity variable: Airport Pass Price. 

 

 


